• 제목/요약/키워드: Causal Machine Learning

검색결과 20건 처리시간 0.024초

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

Causality, causal discovery, causal inference and counterfactuals in Civil Engineering: Causal machine learning and case studies for knowledge discovery

  • M.Z. Naser;Arash Teymori Gharah Tapeh
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.277-292
    • /
    • 2023
  • Much of our experiments are designed to uncover the cause(s) and effect(s) behind a phenomenon (i.e., data generating mechanism) we happen to be interested in. Uncovering such relationships allows us to identify the true workings of a phenomenon and, most importantly, to realize and articulate a model to explore the phenomenon on hand and/or allow us to predict it accurately. Fundamentally, such models are likely to be derived via a causal approach (as opposed to an observational or empirical mean). In this approach, causal discovery is required to create a causal model, which can then be applied to infer the influence of interventions, and answer any hypothetical questions (i.e., in the form of What ifs? Etc.) that commonly used prediction- and statistical-based models may not be able to address. From this lens, this paper builds a case for causal discovery and causal inference and contrasts that against common machine learning approaches - all from a civil and structural engineering perspective. More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference. Finally, this paper also presents a series of examples and case studies of how causal concepts can be adopted for our domain.

인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석 (Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology)

  • 차주호;류민우
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

Non-Causal Filter의 PC-NC에의 응용

  • 장현상;최종률
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1039-1042
    • /
    • 1995
  • In real time application such as motion control, it is hard to find the application of non-causal filtering due to its need for future position data, even though it shows wide usage in off-line digital signal processing. Recently, some of motion control areas such as learning and repetitive control use non-causal filtering technique in their application. these kinds of zero-lag non-causal filter application are very usful not only to reduce the machine vibration, but also to increase control accuracy with comparatively less work. In this paper, genuine method to implement zero-lag non-causal filter in a CNC is introduced. Also the variation of this implementation for the learning operation is suggested to give the NC better control performance for a specific job. By adopting the new NC architecture call Soft-NC, all these implementions are made possible here, and especially large memory requirement which hinders their usage for many years is no longer barrier in their real world application.

  • PDF

건설 사고사례 데이터 기반 건설업 사망사고 요인분석 (A Data-Driven Causal Analysis on Fatal Accidents in Construction Industry)

  • 최지윤;김시현;이송이;김경훈;이수동
    • 대한안전경영과학회지
    • /
    • 제25권3호
    • /
    • pp.63-71
    • /
    • 2023
  • The construction industry stands out for its higher incidence of accidents in comparison to other sectors. A causal analysis of the accidents is necessary for effective prevention. In this study, we propose a data-driven causal analysis to find significant factors of fatal construction accidents. We collected 14,318 cases of structured and text data of construction accidents from the Construction Safety Management Integrated Information (CSI). For the variables in the collected dataset, we first analyze their patterns and correlations with fatal construction accidents by statistical analysis. In addition, machine learning algorithms are employed to develop a classification model for fatal accidents. The integration of SHAP (SHapley Additive exPlanations) allows for the identification of root causes driving fatal incidents. As a result, the outcome reveals the significant factors and keywords wielding notable influence over fatal accidents within construction contexts.

Multi-Sensor Signal based Situation Recognition with Bayesian Networks

  • Kim, Jin-Pyung;Jang, Gyu-Jin;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1051-1059
    • /
    • 2014
  • In this paper, we propose an intelligent situation recognition model by collecting and analyzing multiple sensor signals. Multiple sensor signals are collected for fixed time window. A training set of collected sensor data for each situation is provided to K2-learning algorithm to generate Bayesian networks representing causal relationship between sensors for the situation. Statistical characteristics of sensor values and topological characteristics of generated graphs are learned for each situation. A neural network is designed to classify the current situation based on the extracted features from collected multiple sensor values. The proposed method is implemented and tested with UCI machine learning repository data.

증권 금융 상품 거래 고객의 이탈 예측 및 원인 추론 (A Securities Company's Customer Churn Prediction Model and Causal Inference with SHAP Value)

  • 나광택;이진영;김은찬;이효찬
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.215-229
    • /
    • 2020
  • 산업 분야를 막론하고 머신러닝의 관심이 매우 높아지고 있으나, 머신러닝이 지닌 설명 불가능성은 여전히 문제로 남아있어 적극적인 업무 적용에 어려움이 있다. 본고에서는 증권사 금융 고객을 대상으로 이탈예측 모델 개발 사례를 소개하고 SHAP Value 기법을 사용하여 설명 가능한 머신러닝 모델 개발 시도와 해석 가능성 도출에 대한 연구 결과를 소개한다. 총 6가지 고객이탈 모델을 비교 분석하였으며, SHAP Value와 고객의 자산 변화에 따른 유형 분류 및 데이터 분석을 통해 고객 이탈 원인을 추론한다. 본 연구 결과를 토대로, 향후 마케팅 담당자의 실제 고객 마케팅 수행에 있어 원인 추론이 가능한 이탈 예측 결괏값을 사용하고 고객별 마케팅 여부를 점검하는 등의 종합적 판단 지표로 활용할 수 있을 것으로 판단된다.

비실험 자료로부터의 인과 추론: 핵심 개념과 최근 동향 (Causal inference from nonrandomized data: key concepts and recent trends)

  • 최영근;유동현
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.173-185
    • /
    • 2019
  • 과학적 연구에서 핵심적인 연구 주제 또는 가설은 대부분 인과적 질문(causal question)을 포함한다. 예를 들어, 전염병 예방을 위한 치료법의 효과 연구, 특정 정책의 시행으로 인한 효용(utility)의 평가에 대한 연구, 특정 사용자를 대상으로 노출된 광고의 종류에 따른 광고의 효과성에 대한 연구는 모두 인과 관계(causal relationship)의 추론이 요구된다. 이러한 인과 관계를 다루는 통계적 인과 추론(statistical causal inference)의 주요 관심사 중 하나는 모집단에 일종의 개입(정책 혹은 처치)을 적용한 후 개입의 효과를 정확하게 추정하는 것이다. 인과 추론은 임상실험과 정책결정에서 주로 이용되었으나, 이른바 빅데이터 시대의 도래로 가용한 관측자료가 폭발적으로 증가하였고 이로 인하여 인과 추론에 대한 잠재적 응용가치와 수요가 지속적으로 증가하고 있다. 하지만 가용한 대부분의 자료는 임의실험 기반의 자료와 달리 개입이 임의로 분배되지 않은 비실험 관측자료이다. 따라서, 본 논문은 비실험 관측자료로부터 개입의 효과를 추정하기 위한 인과 추론의 핵심 개념과 최근의 연구동향을 소개하고자 한다. 이를 위하여 본문에서는 먼저 개입의 효과를 Neyman-Rubin의 잠재 결과(potential outcome) 모형으로 나타내고, 개입의 효과를 추정하는 여러 접근법 중 특히 성향점수(propensity score) 기반 추정법과 회귀모형 기반 추정법을 중점적으로 소개한다. 최근 연구동향으로는 (1) 평균 효과 크기 추정을 넘어선 개인별 효과 크기의 추정, (2) 효과크기 추정에 있어서 자료 규모의 증대로 인한 차원의 저주가 야기하는 난제들과 이에 대한 해결방안들, (3) 복합적 인과관계를 반영하기 위한 Pearl의 구조적 인과 모형(structural causal model) 및 잠재 결과 모형과의 비교의 3가지 주제로 구분하여 소개한다.

반사실적 데이터 증강에 기반한 인과추천모델: CausRec사례 (A Causal Recommendation Model based on the Counterfactual Data Augmentation: Case of CausRec)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제30권4호
    • /
    • pp.29-38
    • /
    • 2023
  • A single-learner model which integrates the user's positive and negative perceptions is proposed by augmenting counterfactual data to the interaction data between users and items, which are mainly used in collaborative filtering in this study. The proposed CausRec showed superior performance compared to the existing NCF model in terms of F1 value and AUC in experiments using three published datasets: MovieLens 100K, Amazon Gift Card, and Amazon Magazine. Compared to the existing NCF model, the F1 and AUC values of CausRec showed 1.2% and 2.6% performance improvement in MovieLens 100K data, and 2.2% and 10% improvement in Amazon Gift Card data, respectively. In particular, in experiments using Amazon Magazine data, F1 and AUC values were improved by 11.7% and 21.9%, respectively, showing a significant performance improvement effect. The performance of CausRec is improved because both positive and negative perceptions of the item were reflected in the recommendation at the same time. It is judged that the proposed method was able to improve the performance of the collaborative filtering because it can simultaneously alleviate the sparsity and imbalance problems of the interaction data.

Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks

  • Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
    • 대한골대사학회지
    • /
    • 제25권4호
    • /
    • pp.251-266
    • /
    • 2018
  • Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.