Bayesian networks have been used in studying and simulating causal inferences by using the probability function distributed over the variables consisting of inquiry space. The focus of the debates concerning Bayesian networks is the causal Markov condition that constrains the probabilistic independence between all the variables which are not in the causal relations. Cartwright, a strong critic about the Bayesian network theory, argues that the causal Markov condition cannot hold in indeterministic systems, so it cannot be a valid principle for causal inferences. The purpose of the paper is to explore whether her argument on the causal Markov condition is valid. Mainly, I shall argue that it is possible for upholders of the causal Markov condition to respond properly the criticism of Cartwright through the continuous causal model that permits the infinite sequence of causal events.
We shall introduce the concept of almost causality condition. By defining the almost causality condition we would like to examine the relationship between Woodhouse's causality principle and other known causality conditions. We show that a series of causality conditions can be characterized by using the almost causality condition.
the two Korean causal conjunctive suffixes, -nula(ko) and -nun palamey, based on corpus linguistic analysis. Many of the linguistic accounts available, both in pedagogical reference and in the literature on linguistics, provide incomplete analyses of these suffixes, based on fabricated linguistic data. Using naturally occurring, real linguistic data, this paper examines the syntactic and semantic structures of the two causal suffixes through a consideration of three areas of corpus linguistic analysis: token frequencies, collocations, and semantic prosody. An analysis based on concordance data reveals that the two causal connectives, -nula(ko) and -nun palamey, have more differences than similarities in terms of syntactic and semantic constraints. The idiosyncratic structures of the two suffixes are discussed in terms of same subject condition, verb selection, same agent condition, synchronicity condition, and negative semantic prosody.
Early research into category-based feature inference reported various phenomena in human thinking including typicality, diversity, similarity effects, etc. Later research discovered that participants' prior knowledge has an extensive influence on these sorts of reasoning. The current research tested the effects of causal knowledge on feature inference and conducted modeling on the results. Participants performed feature inference for categories consisted of four features where the features were connected either in common cause or common effect structure. The results showed typicality effects along with violations of causal Markov condition in common cause structure and causal discounting in common effect structure. To model the results, it was assumed that participants perform feature inference based on the difference between the probabilities of an exemplar with the target feature and an exemplar without the target feature (that is, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$). Exemplar probabilities were computed based on causal model theory (Rehder, 2003) and applied to inference for target features. The results showed that the model predicts not only typicality effects but also violations of causal Markov condition and causal discounting observed in participants' data.
Mee Qi Siow;Yang Sok Kim;Mi Jin Noh;Mu Moung Cho Han
Smart Media Journal
/
v.12
no.10
/
pp.29-37
/
2023
Human lifestyle is affected by the agricultural development in the last 12,000 years ago. The development of agriculture is one of the reasons that global population surged. To ensure sufficient food production for supporting human life, pesticides as a more effective and economical tools, are extensively used to enhance the yield quality and boost crop production. This study investigated the factors that affect crop production and whether the factors of pesticide usage are the most important factors in crop production using the dataset from Kaggle that provides information based on crops harvested by various farmers. Logistic regression is used to investigate the relationship between various factors and crop production. However, the logistic regression is unable to deal with predictors that are related to each other and identifying the greatest impact factor. Therefore, causal discovery is applied to address the above limitations. The result of causal discovery showed that crop condition is greatly impacted by the estimated insects count, where estimated insects count is affected by the factors of pesticide usage. This study enhances our understanding of the influence of pesticide usage on crop production and contributes to the progress of agricultural practices.
Purpose: This study attempts to investigate causal and intervening conditions for sport participation of Korean immigrants in the United States. Research design, data, and methodology: Grounded theory approach was used to develop a conceptual framework that presents the psychosocial processes that occur in immigrants' experience of sport participation. Participants were selected purposefully for information-rich cases. Korean immigrants with current experience of having periodically participated in sports were the criterion for sample selection. Based on selection criteria, 9 Korean immigrants took part in interview. The interview discussions were taped and transcribed verbatim into a Word file. The process for data analysis included four grounded theory approaches of purposive and theoretical sampling, an open and axial coding, memo writing, and finally the development of the conceptual framework. Results: Six concepts were revealed in the causal conditions that facilitate the process of immigrants' sport participation in the states: Personal experience, significant others, personality, physical environment, psychological well-being, and social connection. Three concepts were revealed as the intervening conditions that block the process of immigrants' sport participation in the states: Conflict with cultural change of organization, Pressure at workplace, and Economic constraints. Conclusions: Conceptual model presents causal and intervening factors. Further implications were discussed.
Concepts and categories offer the basis for inference pertaining to unobserved features. Prior research on category-based induction that used blank properties has suggested that similarity between categories and features explains feature inference (Rips, 1975; Osherson et al., 1990). However, it was shown by later research that prior knowledge had a large influence on category-based inference and cases were reported where similarity effects completely disappeared. Thus, this study tested category-based feature inference when features are connected in a causal chain and proposed a feature inference model that predicts participants' inference ratings. Each participant learned a category with four features connected in a causal chain and then performed feature inference tasks for an unobserved feature in various exemplars of the category. The results revealed nonindependence, that is, the features not only linked directly to the target feature but also to those screened-off by other feature nodes and affected feature inference (a violation of the causal Markov condition). Feature inference model of causal model theory (Sloman, 2005) explained nonindependence by predicting the effects of directly linked features and indirectly related features. Indirect features equally affected participants' inference regardless of causal distance, and the model predicted smaller effects regarding causally distant features.
In general relativity, analyzing causality is central to the study of black holes, to cosmology, and to each of the major recent mathematical theorems. By causality we refer to the general question of which points in a space-time can be joined by causal curves; relativistically which events can influence (be influenced by) a given event. Various causality conditions have been developed for space-times of the problems associated with examples of causality violations (2, 4). Causally continuous space-times were defined by Hawking and Sachs (5). Budic and Sachs (3) established causal completion. A metrizable topology on the causal completion of a causally continuous space-time was studied by Beem(1). Recently the region of space-time where causal continuity is violated was studied by Ishikawa (6) and Vyas and Akolia (8). In this paper we show characterization for reflectingness in terms of continuity of set valued functions. We investigate some properties of the region related to a causally continuous space-time where distinguishingness is violated, and characterize the chronology condition in terms of distinguishing-violated region.
Proceedings of the Korean Institute of Building Construction Conference
/
2022.04a
/
pp.85-86
/
2022
Traditionally, the facility inspection was visually conducted by the managers, and consequently the result can be subjective because of different perspective and experience of them. To solve this problem, the studies on this topic has tried to integrate the UAS. However, it is still concerned to use in practice due to the lack of analysis of the performance factors affecting the UAS-based facility condition inspection. Hence, the purpose of this study is to identify the critical factors as well as their correlations by modeling causal loop diagram (CLD). A total of 20 variables were derived in four categorized groups, and the relationships were analyzed. Further study will develop a system dynamics (SD) model to simulate various scenarios based on stock-flow diagram through the defined relationships in this study.
The purpose of this study is to illuminate the precise nature and the central line of Kant's proof of the causal principle stated in the Second Analogy of the 2nd. edition of the Critique of Pure Reason. The study argues for the following thesis: 1. The proof of the Second Analogy concerns only the causal principle called the "every-event-some-cause" principle, and not the causal law(s) called the "same-cause-same-event" principle. 2. The goal of the proof is to establish the possibility of knowledge of an temporal order of successive states of an object. 3. The proof is broadly an single transcendental argument in two steps. The 1st. step is an analytic argument that infers from the given perceptions of an oder of successive states of an objects to the conclusion that the causal principle is the necessary condition for the objectivity of dies perceived order. The 2nd. step is a synthetic argument that infers from the formal nature of time to the conclusion that the causal principle is a necessary condition for die possibility of objective alterations and of empirical knowledge of these alterations. 4. The poof involves not the 'non sequitur' assumed by P. F. Strawson, that is, Kant infers not directly from a feature of our perceptions to a conclusion regarding the causal relations of distinct states of affairs that supposedly correspond to these perceptions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.