• Title/Summary/Keyword: Cattle feces

Search Result 101, Processing Time 0.019 seconds

Effect of variation of Nitrogen Content by Cattle Feces on Aerobic Composting of Food Wastes (우분에 의한 질소함량의 변화가 음식물폐기물의 호기성 퇴비화에 미치는 영향)

  • 박석환;김종오
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.38-42
    • /
    • 2000
  • This study was performed to define the effects of the cattle feces on aerobic composting of food wastes in vessel system. Weights of cattle feces added to food wastes of 3kg were 0.25, 0.50, 1.00 and 1.50kg, respectively. Reactors were operated with stirring for 1 hour per day by 1rpm and aeration for 2 hours per day. When the weight of cattle feces was increased, the highest temperature of sample was increased, the duration period of higher temperature was elongated, and the fluctuatio of pH was severs. When the weight of cattle feces was decreased, the final density was increased. The more cattle feces were added, the more porosity was increased, C/N ratio, salinity and conductivity were decreased. There facts denotes that the addition of cattle feces increases the efficiency of composting process and the final product of composting, namely compost.

  • PDF

Quality Characteristics of Livestock Feces Composts Commercially Produced in Gyeonggi Province in 2008

  • Kang, Chang-Sung;Roh, An-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.293-296
    • /
    • 2011
  • This survey was conducted to promote the environment-friendly use and recycling of livestock feces by obtaining information about the current state of livestock feces composts manufactured in Gyeonggi Province. Therefore, some aspects of quality and manufacturing techniques of livestock feces composts (LFCs) were examined especially in relation to the LFCs quality standard (LQS). By surveying the 70 composting plants in Gyeonggi Province, the total commercial production of LFCs in 2008 was estimated to be about $480,000Mg\;year^{-1}$ and they were manufactured mainly by using both mechanical mixer and bottom air blower. LFCs were composed mainly of chicken feces 29.2%, pig+chicken feces 23.1%, pig feces 20.0%, livestock feces+oil cake 12.3%, pig+chicken+cattle feces 10.8% and pig+cattle feces 4.6%. On the basis of the current official standard which was revised on March 2010, 11 composts out of surveyed 76 ones did not meet the LQS due to inadequate content of water (5), OM/N (1), NaCl (2) and Zn (3). The satisfaction rate to LQS by manufacturers was 100% in the composts produced by farmer's cooperative societies, 80.7% by civil factories, and 44.4% by farming guilds, respectively. The OM/N declined by adding chicken feces and oil cake, while Ca content was increased by the addition of chicken feces and NaCl was increased by adding cattle feces.

A Study on the Distribution of Antibiotic Resistant Bacteria in Domesticated Animal Feces (가축 분변중의 항생제 내성균주의 분포에 관한 연구)

  • Kwon, Hyuk-Ku;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.142-150
    • /
    • 2012
  • Objectives: To estimate the multi-antibiotic resistant bacterial contaminant load discharged from livestock farms, we randomly selected livestock farms specializing in cattle, swine, and fowl and collected bacterial strains from domesticated animal feces and compost samples. Problems with resistance to antibiotics are becoming worldwide issues, and as the consumption of antibiotics appears to be excessive in Korea as well, the emergence of antibiotic resistant bacteria shows the possibility to cause potentially serious social problems. Methods: To monitor multi-antibiotic resistant bacterial constituents, aerobic bacteria and Escherichia coli were isolated from domesticated animal feces and compost. Antibiotic resistance testing was performed by the disc diffusion method using 13 different antibiotics. Results: Examining the degree of sensitivity to antibiotics of the aerobic bacteria originating from domesticated animal feces, fowl feces showed the highest distribution rate (35.5%), followed by swine feces compost (23.1%), swine feces (18.2%), cattle feces (14.9%), and cattle feces compost (8.2%). Antibiotic resistance tests of aerobic bacteria and E. coli originating from domestic animals feces resulted in 83.6% and 73.5% of each strain showing resistance to more than one antibiotic, respectively. Conclusions: These results suggest that increasing multi-antibiotic resistant bacteria in the environment has a close relation to the reckless use of antibiotics in livestock.

Evaluating the Prevalence of Foodborne Pathogens in Livestock Using Metagenomics Approach

  • Kim, Hyeri;Cho, Jin Ho;Song, Minho;Cho, Jae Hyoung;Kim, Sheena;Kim, Eun Sol;Keum, Gi Beom;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1701-1708
    • /
    • 2021
  • Food safety is the most important global health issue due to foodborne pathogens after consumption of contaminated food. Foodborne bacteria such as Escherichia coli, Salmonella enterica, Staphylococcus aureus, Campylobacter spp., Bacillus cereus, Vibrio spp., Yersinia enterocolitica and Clostridium perfringens are leading causes of the majority of foodborne illnesses and deaths. These foodborne pathogens often come from the livestock feces, thus, we analyzed fecal microbial communities of three different livestock species to investigate the prevalence of foodborne pathogens in livestock feces using metagenomics analysis. Our data showed that alpha diversities of microbial communities were different according to livestock species. The microbial diversity of cattle feces was higher than that of chicken or pig feces. Moreover, microbial communities were significantly different among these three livestock species (cattle, chicken, and pig). At the genus level, Staphylococcus and Clostridium were found in all livestock feces, with chicken feces having higher relative abundances of Staphylococcus and Clostridium than cattle and pig feces. Genera Bacillus, Campylobacter, and Vibrio were detected in cattle feces. Chicken samples contained Bacillus, Listeria, and Salmonella with low relative abundance. Other genera such as Corynebacterium, Streptococcus, Neisseria, Helicobacter, Enterobacter, Klebsiella, and Pseudomonas known to be opportunistic pathogens were also detected in cattle, chicken, and pig feces. Results of this study might be useful for controlling the spread of foodborne pathogens in farm environments known to provide natural sources of these microorganisms.

Coccidiosis in Korean Native Cattle (비육한우(肥育韓牛)에 집단발생(集團發生)한 콕시듐증(症))

  • Park, Cheong Kyu;Jang, In Ho
    • Korean Journal of Veterinary Research
    • /
    • v.18 no.1
    • /
    • pp.33-37
    • /
    • 1978
  • Enteritis occured in a herd of Korean native cattle in Gyeonbug district in February 1977. of 40 cattle ranging in age from 15 to 20 months, 17 had been sick for the past six days with main clinical findings of feces containing mucus and blood. Among affected cattle, feces of 8 cattle were examined bacteriologically and parasitologically to investigate the causative agent. The disease was diagnosed as bovine coccidiosis caused by Eimeria zurnii based on the detection of $o{\ddot{o}}cysts$ and one of cattle was infected E. bukidnonensis, too.

  • PDF

Differences in microbiome and virome between cattle and horses in the same farm

  • Park, Jongbin;Kim, Eun Bae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1042-1055
    • /
    • 2020
  • Objective: The ecosystem of an animal farm is composed of various elements, such as animals, farmers, plants, feed, soil, and microorganisms. A domesticated animal's health is largely connected with the reservoir of bacteria and viruses in animal farms. Although a few studies have focused on exploring the gut microbiome of animals, communities of microbiota and viruses in feedlots have not been thoroughly investigated. Methods: Here, we collected feces and dust samples (4 groups: cattle feces, C_F; horse feces, H_F; cattle dust, C_D; and horse dust, H_D) from cattle and horse farms sharing the same housing and investigated their microbiome/virome communities by Illumina sequencing. Results: Dust groups (C_D and H_D) showed higher microbial diversity than feces groups (C_F and H_F) regardless of animal species. From the microbial community analysis, all the samples from the four groups have major phyla such as Proteobacteria (min 37.1% to max 42.8%), Firmicutes (19.1% to 24.9%), Bacteroidetes (10.6% to 22.1%), and Actinobacteria (6.1% to 20.5%). The abundance of Streptococcus, which commonly recognized as equine pathogens, was significantly higher in the horse group (H_D and H_F). Over 99% among the classified virome reads were classified as Caudovirales, a group of tailed bacteriophages, in all four groups. Foot-and-mouth disease virus and equine adenovirus, which cause deadly diseases in cattle and horse, respectively, were not detected. Conclusion: Our results will provide baseline information to understand different gut and environmental microbial ecology between two livestock species.

Molecular Detection of Verotoxigenic Escherichia coli (VTEC) from Animal Feces for Screening VTEC-shedders

  • Kobayashi, Y.;Sato, M.;Taguchi, H.;Koike, S.;Nakatsuji, H.;Tanaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.423-427
    • /
    • 2004
  • Seventy-six animals including cattle, sheep, horses, 6 species of zoo animals were employed for collection of fresh feces in order to detect verotoxigenic Esherichia coli (VTEC) by safe, quick and sensitive PCR-based molecular methods. Bacterial cell disruption with bead-beating followed by bacterial DNA purification with hydroxyapatide chromatography and gel filtration allowed DNA preparation from animal feces with high recovery and purity. A mountain goat was firstly shown by PCR and sequencing to shed verotoxin 2 gene (vt2) that was used to generate vt2 probe and second primer set for nested PCR to attempt more sensitive detection. Most sensitive nested PCR revealed that 45% of tested cattle and 47% of tested zoo animals were VTEC-positive, while least sensitive normal PCR detected VTEC from none of these animals except a mountain goat. Moderately sensitive detection by PCR in combination with hybridization suggested that the VTEC density varied between the VTEC-positive cattle.

Year-round Monitoring of Verotoxin-producing Escherichia coli from Feces of Dairy Cattle

  • Kobayashi, Y.;El-Sawy, H.B.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.789-794
    • /
    • 2007
  • A PCR-aided monitoring of verotoxin-producing Escherichia coli (VTEC) was performed over the period of 12 months by using fresh feces collected monthly from 5 dairy cows that had been identified as VTEC carriers. The PCR products were confirmed to be verotoxin genes by Southern hybridization using a gene fragment of verotoxin 2 as a probe. Although seasonal variation of VTEC shedding seemed to depend on each cow, several factors may have influenced the frequency of detection. Shedding of VTEC tended to be reduced during grazing from the middle of May up to the beginning of October. Only one cow was positive for VTEC in August. Dry-off was also suggested to have a depressive effect on VTEC shedding, i.e. 3 of 4 dry cows showed no shedding of VTEC. Contrary to these factors, winter or indoor rearing tended to increase VTEC with only 5/24 samples being negative during the period from November to April. Total VFA concentration was higher (p<0.05) in VTEC-positive feces than in VTEC-negative feces, while fecal pH and VFA proportions were not different. Partial sequences of verotoxin genes from feces of 4 VTEC-positive cows were nearly identical (99-100%), suggesting that gut bacteria sharing the same gene were distributed among the cows. The present results indicate that grazing and dry-off could be factors which reduce VTEC shedding, while winter/indoor rearing may be a factor which increases the shedding, possibly through on-farm interactions.

Experimental induction of the two-host life cycle of Sarcocystis cruzi between dogs and Korean native calves

  • Wee, Sung-Hwan;Shin, Sung-Shik
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.3
    • /
    • pp.227-232
    • /
    • 2001
  • Eight dogs were experimentally infected with Sarcocystis by oral inoculation of cardiac muscle from naturally infected cattle. The infected dogs commenced discharging of sporocysts in the feces after 10 to 12 days of inoculation, and continued until 20 and 35 days after inoculation. Three dogs were reinfected with cardiac muscle from the naturally infected cattle. Sporocysts reappeared in the feces on 12 to 13 days after reinfection. Sarcosystis sporocysts collected from the experimentally infected dogs were fed to each of the two 30-day-old Korean native calves. The infected calves remained clinically normal, except for the high fever (${\geq}{\;} 40^{\circ}C$) and decreased hematocrit values on day 30 to 40 post inoculation. Muscular cysts of Sarcocystis were found from infected calves on day 40 post inoculation. Proliferative forms of Sarcocystis were also observed in the muscle of infected calves. These results suggest that the Sarcocystis cruzi found in Korean native cattle has a 2-host life cycle with dogs as the definitive host and Korean native calves as the intermediate host.

  • PDF

Prevalence of Cryptosporidium sp among calves and pigs in Jeonbuk province (전북지역의 소와 돼지에서 Cryptosporidium sp의 감염실태 조사)

  • 양홍지;김종승
    • Korean Journal of Veterinary Service
    • /
    • v.24 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • Cryposporidium species have a wide host range. These coccidian parasites are found in close association with epithelial cells of many species of animals including mm. The gastrointestinal tract is most commonly affected in young ruminants and this parasite is thought to be considerable importance in calf diarrhea complex. Major outbreaks of cryptosporidiosis have been reported in calves, lambs, pigs and others including avian species. Cryptosporidiosis is transmitted by oocysts of Cryptosporidium species. Because cryptosporidiosis is common infection among animals, early literature considered it a zoonosis. Human infections contracted from calves, cats, and horse feces. However, the resrvoir host is longer considered the major source of infection. Mild cases of disease have been reported in farm workers. Immunosuppressed, very young and very old persons should avoid contact with this parasite because it may cause severe diarrhea. In order to detect of Crytosporidium sp infection from feces of cattle and pigs at Chonbuk Iksan and Kunsan area, sedimentation and modified acid fast stain were applied. The positive rate of Cryptosporidium sp infection from 1, 176 of cattle and 267 of pigs were 0.5 % and 16.8%, respectively. According to area in Iksan and Kunsan, the positive rates were 0.4% and 0.9% from cattle, and 18.9% and 12.1% from pigs, respectively. In cattle, positive detection rate was 0.6% in milking cows but not in Korean cattle.

  • PDF