• Title/Summary/Keyword: Cationic surfactants

Search Result 125, Processing Time 0.029 seconds

Fabrication of nanoaggregates of triple hydrophilic block copolymers by binding of ionic surfactants

  • Khanal, Anil;Yusa, Shin-Ichi;Nakashima, Kenichi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.302-302
    • /
    • 2006
  • Nanoaggregates of triple hydrophilic block copolymers comprised of poly(ethylene oxide), poly(sodium 2-acrylamido)-2-methylpropanesulfonate), and poly(methacrylic acid) (PEO-PAMPS-PMAA) and the cationic surfactant, dodecyltrimethylammonium chloride (DTAC) have been fabricated. The formation of $^{\circ}^{\circ}$the nanoaggregates is based on electrostatic interaction of sulfonate and carboxylate groups of PAMPS and PMAA blocks with the cationic surfactant, which results in insolubilization of these blocks. The formation of micelle is observed by dynamic light scattering measurements. Binding of DTAC to the anionic blocks of PEO-PAMPS-PMAA is confirmed by electrophoresis measurements.

  • PDF

Preparation and Dispersion Characteristics of Oil-based Magnetic Fluids with Synthesized Magnetite (합성마그네타이트를 이용한 유상자성유체의 제조 및 분산특성)

  • Cho, Myeong-Ho;Kim, Mahn;Min, Dong-Joon;Oh, Jae-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.901-908
    • /
    • 1996
  • The oil-based magnetic fluids were prepared with synthesized ultrafine magnette by allowing surfactactants such as sodium oleate and aliquat 336 to adsorb on the surface of magnetite particles. The dispersion ratio of oil-based magnetic fluids was higher than 90% when the amount of sodium oleate and aliqua 336 were more than 2.63$\times$10-2 mol and 6.56$\times$10-3 mol for 20g of magnetite respectively. The dispersion ratio of oil-based magnetic fluids with the amount of secondary surfactant addition was higher than 90% when oil-based magnetic fluids were prepared with aliquat 336 of cationic type. However oil-based magnetic fluids prepared with surfactants of anionic and nonionic type showed lower dispersion than whose with cationic surfac-tants.

  • PDF

Universal LC Method for a Determination of Fourteen Cationic Surfactants Widely Used in Surfactant Industry

  • Ryu, Ho-Ryul;Park, Hong-Soon;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.85-88
    • /
    • 2007
  • Ab initio periodic Hartree-Fock calculations with the full potential and minimum basis set are applied to interpretation of scanning tunneling microscope (STM) and atomic force microscope (AFM) images on 1TVTe2. Our results show that the simulated STM image shows asymmetry while the simulated AFM image shows the circular electron densities at the bright spots without asymmetry of electron density to agree with the experimental AFM image. The bright spots of both the STM and AFM images of VTe2 are associated with the surface Te atoms, while the patterns of bright spots of STM and AFM images are different.

Mixed Micellization of Anionic Ammonium Dodecyl Sulfate and

  • Gang, Gye Hong;Kim, Hong Un;Im, Gyeong Hui;Jeong, No Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1009-1014
    • /
    • 2001
  • In aqueous mixtures of cationic OTAC (octadecyl trimethyl ammonium chloride) and anionic ADS (ammonium dodecyl sulfate) surfactants, mixed micelles were formed at low (< 0.2 wt %) total surfactant concentrations. For these mixtures mixed micelliza tion and interaction of surfactant molecules were examined. Mixed critical micelle concentration (CMC), thermodynamic potentials of micellization, and minimum area per surfactant molecule at the interface were obtained from surface tensiometry and electrical conductometry. The mixed micellar compositions and the estimation of interacting forces were determined on the basis of a regular solution model. The CMCs were reduced, although not substantial, and synergistic behavior of the ADS and OTAC in the mixed micelles was observed. The CMC reductions in this anionic/cationic system were comparable to those in nonionic/anionic surfactant systems. The interaction parameter $\beta$ of the regular solution model was estimated to be -5 and this negative value of $\beta$ indicated an overall attractive force in the mixed state.

Trend on Development and Application of High Performance Surfactants for Detergents (세제용 고기능성 계면활성제의 개발 및 응용 동향)

  • Rang, Moon-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • The surfactants applied in household detergents and industrial cleansers should satisfy the requirement of not just the basic function such as emulsification, solubilisation, dispersion, detergency, wetting and foaming, but also the economical efficiency and the safety to human and environment. In the viewpoint of the sustainable development, the surfactants, moreover, have to reduce raw materials and energy consumption and waste disposal when they are being manufactured and also consumed for their purposes. New high-performance surfactants have been extensively studied and developed in order to respond the change in social and economical environment. Noticeable progresses have been achieved so far, which are the significant increase in solubility and surface activity through the minor modification of existing surfactant molecular structure and the synergistic increase in a surface activity shown in the mixed surfactant system of anionic and cationic surfactants. In this review, the important and meaningful progresses achieved recently in technological advance and practical application will be summarized and discussed.

Improving the Microbial Safety of Fresh-Cut Endive with a Combined Treatment of Cinnamon Leaf Oil Emulsion Containing Cationic Surfactants and Ultrasound

  • Park, Jun-Beom;Kang, Ji-Hoon;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.503-509
    • /
    • 2018
  • Endive is widely consumed in a fresh-cut form owing to its rich nutritional content. However, fresh-cut vegetables are susceptible to contamination by pathogenic bacteria. This study investigated the antibacterial activities of the combined treatment of cinnamon leaf oil emulsion containing cetylpyridinium chloride or benzalkonium chloride (CLC and CLB, respectively) as a cationic surfactant and ultrasound (US) against Listeria monocytogenes and Escherichia coli O157:H7 on endive. The combined treatment of CLC or CLB with US reduced the population of L. monocytogenes by 1.58 and 1.47 log colony forming units (CFU)/g, respectively, and that of E. coli O157:H7 by 1.60 and 1.46 log CFU/g, respectively, as compared with water washing treatment. The reduction levels of both pathogens were higher than those observed with 0.2 mg/ml sodium hypochlorite. In addition, the combined treatment showed no effect on the quality of the fresh-cut endive (FCE). In particular, the degree of browning in FCE was less for the treatment group than for the control and water washing treatment groups. Thus, cationic surfactant-based cinnamon leaf oil emulsions combined with US may be an effective washing treatment for the microbial safety of FCE.

Phase Inversion Emulsification and Enhancement of Physical Properties for Cationic Emulsified Asphalt

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • In this work, the emulsified asphalt with high phase stability and storage stability was prepared by using phase inversion emulsification and the surfactant mixed with cationic and nonionic surfactants. It was found that the asphalt together with Span 20, nonionic surfactant and DDA (Dimethyl Dodecyl Amine), cationic surfactant showed the most stable phase. The phase stability of the emulsified asphalt, therefore, was investigated through the particle size with mixed surfactant content, rheology behavior and Zeta potential value; the particle size decreased with the increase of the mixed surfactant content but the viscosity increased. The shear thinning behaviors and the Zeta potential value with 50 mV~60 mV were shown, which was found to be considered stable. In addition, SBR latex(Styrene-butadiene-rubber) and water dispersed Epoxy (EPD) were used to enhance the physical properties of the emulsified asphalt. The swelling and adhesion features of the emulsified asphalt were also studied with $CaCO_3$, Silica, and Montmorillonite (MMT). It was shown that the addition of SBR latex and MMT can be another way to improve the physical properties of the emulsified asphalt in that the lowest swelling feature was found.

An influence on EDC/PPCPs adsorption onto single-walled carbon nanotubes with cationic surfactant (단일벽 탄소나노튜브의 미량유해물질 흡착거동에서 양이온 계면활성제의 영향에 관한 연구)

  • Heo, Jiyong;Lee, Heebum;Han, Jonghun;Son, Mihyang;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.419-429
    • /
    • 2014
  • Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.382-388
    • /
    • 2004
  • The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Thermodynamics on the Mixed Micellar Formation of Dimethyldodecylamine Oxide in Water/n-Propanol (Dimethyldodecylamine Oxide 의 물/n-프로판올 용매에서 혼합미셸 형성에 관한 열역학적 연구)

  • Lee Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.562-569
    • /
    • 1993
  • The pseudophase separation model is used to describe the effects of pH and n-propanol on the mixed micellar formation of protonated and unprotonated dimethyldodecylamine oxides. Dimethyl-dodecylamine oxide surfactant molecules may exist in aqueous solution in either nonionic (unprotonated) or cationic (protonated) form, and they can be modeled thermodynamically as a binary mixture of cationic and nonionic surfactants. The composition of the binary mixture is varied by adjusting the solution pH. And activities, micellar compositions, and monomeric compositions of two surfactant species can be calculated directly from the experimental titration data by applying pseudophase separation model to the micellar system of DDAO in water/n-propanol. The critical micellar concentrations and the p$K_a$ values of the binary mixture systems are dependent on the micellar composition of the protonated cationic surfactant (X); especially they show the minimum phenomena when they are plotted against the micellar composition of the protonated cationic surfactant (X). The critical micellar concentration of the binary mixed DDAO system is generally decreased when n-propanol is added to the binary mixture system, and the degree of decrease is dependent on the concentration of n-propanol.

  • PDF