• 제목/요약/키워드: Cationic liposome

검색결과 51건 처리시간 0.031초

A DPL (DNA/peptide/liposomes) Tripartite Complex Effective for Transfection in Serum

  • Kim Young-Cheol;Park Jong-Gu
    • 대한의생명과학회지
    • /
    • 제10권3호
    • /
    • pp.187-194
    • /
    • 2004
  • A short peptide corresponding to the nuclear localization signal (NLS) of human immunodeficiency virus (HIV)-l Tat protein, Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg, was employed to improve the efficiency of cellular uptake of nucleic acids. The peptide was first mixed with a reporter plasmid and then with cationic liposomes to form a tripartite complex of DNA/peptide/liposomes (DPL). Transfection efficiency of the DPL complex was compared with that of the conventional DNA/liposomes (DL) complex. When the DPL complex was formed with various cationic liposomes, DOTAP/DOPE (DP) liposome exhibited superior transfection efficiency to other liposomes tested in vitro. With the inclusion of the peptide, the DPL complex showed much enhanced transfection in various cancer cell lines. Particularly, transfection of the DPL complex in serum increased cellular uptake of a transgene up to 2 fold when compared with that in a serum free condition. Further, when the DPL complex was infused through the ureteric route of a rat, transfection efficiency was shown to be better in reporter gene expression than that obtained with the DL complex. This study shows that the DPL complex that is easy to formulate can be employed for much enhanced cellular uptake of a trans gene.

  • PDF

리포솜을 이용한 플라스미드 DNA의 봉입 (Entrapment of Plasmid DNA in Liposomes)

  • 송미향;이만형;용철순;오두만
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권4호
    • /
    • pp.291-297
    • /
    • 1996
  • Liposomes of $pSV-{\beta}-Galactosidase$ vector plasmid DNA with various lipid composition were prepared by the thin-film method. Size distribution, shape and the efficiency of plasmid DNA encapsulation were investigated. Effect of sonication time on the plasmid DNA entrapment in liposomes and stability at $4^{\circ}C$ were also examined. Sizes of neutral liposomes were about 100-200 nm and above $1\;{mu}m$, and those of cationic liposomes were about 400-600 nm and above $1\;{mu}m$. Shapes of liposomes entrapped plasmid DNA were spherical. Proper sonication time for better entrapment was below 15 minutes and stability at $4^{\circ}C$ was decreased rapidly after 1 day. Plasmid DNA entrapments of complex liposomes of various lipids were higher than those of liposomes made from one sort of lipid. Plasmid DNA entrapments of cationic liposomes were higher than those of neutral liposomes.

  • PDF

독소루비신을 함유하고 단백질로 수식된 양이온성 리포솜의 제조 및 혈장 단백흡착 특성 (Preparation of Protein-coated Cationic Liposomes Containing Doxorubicin and Their Binding Property of Blood Plasma Protein)

  • 김성규;정순화;정석현;성하수;지상철;조선행;신병철
    • 대한화학회지
    • /
    • 제52권1호
    • /
    • pp.57-65
    • /
    • 2008
  • 나노 또는 마이크로 크기를 가지는 구형의 약물 전달체이다. 그러나 일반적인 리포솜은 혈류 순환시 혈장 단백질과의 흡착이 일어나 안정성이 떨어지고, 세망내피계의 대식세포에 의해 옵소닌작용이 일어나 혈중에서 쉽게 소실되는 단점이 있다. 이에 본 연구에서는 모델단백질로 소혈청 알부민(BSA)을 사용하였고, BSA의 등전점보다 높은 pH를 나타내는 수용액에 용해하여 BSA가 음이온성을 갖도록 제조하였으며 이를 양이온성 리포솜 표면에 정전기적 인력에 의해 결합시켰다. 그리고 리포솜 표면에 코팅된 알부민을 60oC 이상의 온도에서 변성시켜 알부민이 코팅된 리포솜을 제조하였다. 대조 리포솜과 양이온성 리포솜의 입자크기는 104±1nm를 나타내었고, 변성된 알부민이 결합된 리포솜은 109±1nm의 입자크기를 나타내었다. 모델약물로서는 독소루비신(doxorubicin, DOX)을 사용하였고, 이온구배에 의한 리모트 로딩 방법을 사용하여 리포솜 내부에 DOX를 봉입시켰다. 혈장 내에서 리포솜의 안정성을 평가한 결과, 알부민이 결합된 리포솜은 입자크기의 변화가 관찰되지 않았고, 대조 리포솜과 양이온 리포솜에 비해 단백질 흡착이 억제되어 변성된 알부민으로 코팅된 리포솜은 혈류 내에서 장기 순환이 가능한 약물전달체로서 유용할 것이라 사료된다.

환경 독성 Peptide의 인지질과의 상호 작용 특성 분석 (Analysis of the Interactive Characteristic of Environmental Toxic Peptide and Phospholipid)

  • 이봉헌;박흥재
    • 한국환경과학회지
    • /
    • 제12권1호
    • /
    • pp.77-80
    • /
    • 2003
  • The interaction of mastoparan B, a cationic tetradecapeptide amide isolated from the hornet Vespa basalis, with phospholipid bilayers was studied with synthetic mastoparan B and its analogue with Ala instead of hydrophobic 12th amino acid residue in mastoparan B. MP-B and its derivative, [12-Ala]MP-B were synthesized by the solid-phase peptide synthesis method. MP-B and its analogue, [12-Ala]MP-B adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, the peptides took an $\alpha$-helical structure. The two peptides interacted with neutral and acidic lipid bilayers. These results indicated that the hydrophobic face in the amphipathic $\alpha$-helix of MP-B critically affected the biological activity and helical content.

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond

  • Lee, Soo-Jin;Yoon, Sung-Hwa;Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.802-807
    • /
    • 2011
  • Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.

폴리에틸렌이민 및 그들의 리포좀이 중재된 Plasmid DNA의 운반 (Polyethylenimine Mediated Gene Delivery with Various Liposomal Formulations)

  • 한인숙;전미숙;이갑용
    • 대한화학회지
    • /
    • 제43권2호
    • /
    • pp.193-198
    • /
    • 1999
  • 다가 양이온성 고분자인 polyethylenimine(PEI)를 이용한 plasmid DNA의 세포 전이를 검색했다. 먼저 agarose assay에 의한 2, 10, 25, 및 50KD PEI와 DNA의 중화복합체의 최적비율은 분자량에는 영향을 받지 않았고, 최적의 PEI nitrogen/DNA phosphate 중화 비율은 1.5-2.0(nmol/nmol)로 나타났다. 이 복합체들을 이용한 COS1 세포전이에서는 2KD를 제외하고는 naked DNA에 대비 전이가 증가했고, 이 중에서 특히 25KD PEI는 적정 전이조건에서 DEAE-dextran 혹은 lipofectin 보다 다소 증가된 전이율을 보였다. In vitro 세포전이의 최적 PEI/DNA 비는 7.6-13.3(nmol/nmol)이었고 최적 중화복합체를 이루는 비율보다 높게 나타났다. 용액의 pH에 따른 전이율의 변화는 크게 없었으나 산성일때가 약간 더 증가했다. 세포 표적전이와 독성감소를 위해 인지질분자를 사용한 liposome formulation을 PEI/DNA계에 도입하였다. 그 결과, PC/PE 중성 리포솜이 도입된 경우는 25KD를 제외하고는 PEI 단독일 때 혹은 리포솜 단독일 때 보다 전이율이 2-2.5 배씩 증가했다. 그러나 PEI와 같은 양이온성의 DOTAP/PE 리포솜 도입은 charge repulsion 작용으로 오히려 DOTAP/PE 단독계보다 전이가 감소하는 역효과를 보였다. Liposomal PEI계의 세포독성은 PEI 단독일 때 보다 % cell survival이 10-20% 정도 증가했다. 이 결과들은 PEI가 단독으로도 좋은 전이제로 작용 할 뿐 아니라 세포표적 운반이 가능한 중${\cdot}$음성 리포솜의 효과적인 DNA 응축제로도 이용 될 수 있음을 증명했다.

  • PDF

플라스미드 유전자를 함유한 리포좀의 제조 및 특성 (Preparation and Characterization of Plasmid DNA Encapsulated in Liposomes)

  • 박효민;정수연;고은정;이화정
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권3호
    • /
    • pp.209-213
    • /
    • 2003
  • The objective of this study was to construct the pegylated liposomes containing plasmid DNA with optimal encapsulation efficiency. Plasmid DNA $(pGL2\;clone\;753,\;{\sim}6\;kb)$ was encapsulated by the freeze/thawing method into liposomes composed of 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphocholine (POPC), didodecyl dimethyl ammonium bromide (DDAB), distearoylphosphatidyl ethanolamine polyethylene glycol 2000 (DSPE-PEG 2000) and DSPE-PEG 2000-male-imide. The liposomes containing plasmid DNA were then extruded through two stacked polycarbonate filters with series of different pore sizes to control the liposome size. The plasmid DNA entrapped in the liposomes was separated from free plasmid DNA by Sephadex CL-4B column chromatography. The decreased pore size of polycarbonate filters resulted in the decreased size of liposomes. The encapsulation efficiency was markedly affected by the cationic lipid (DDAB) concentration, but to a low degree by the size of liposomes and by the amount of plasmid DNA.

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Plasminogen Activator Inhibitor-1 Antisense Oligodeoxynucleotides Abrogate Mesangial Fibronectin Accumulation

  • Park, Je-Hyun;Seo, Ji-Yeon;Ha, Hun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.385-390
    • /
    • 2010
  • Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-${\beta}1$, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with $1\;{\mu}M$ phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-${\beta}1$. PAl-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-${\beta}1$ significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-${\beta}1$-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.

수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향 (Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells)

  • 노영욱;임종석
    • IMMUNE NETWORK
    • /
    • 제6권2호
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.