• 제목/요약/키워드: Cation exchange capacity (CEC)

검색결과 184건 처리시간 0.02초

고랭지 주요작물의 시비 및 토양관리 실태 (Status of Fertilizer Application and Soil Management for Major Vegetable Crops in Farmers' Fields of Alpine Area)

  • 이정태;이계준;장용선;황선웅;임수정;김창배;문영훈
    • 한국토양비료학회지
    • /
    • 제39권6호
    • /
    • pp.357-365
    • /
    • 2006
  • 본 연구는 고랭지 주요 채소작물에 대한 적정 시비관리 및 토양관리기술의 기초 자료로 이용하고자 2003년에서 2004년까지 2년에 걸쳐 고랭지권역 792개소를 대상으로 토양관리실태 및 시비실태를 조사하였다. 그 결과 재배지역의 표고는 강원(679 m)>경북(560 m )>전북(524 m) 순으로 높은 반면, 경사는 전북(10.6%)>경북(8.2%)>강원(7.5%) 순으로 높았다. 그리고 토성은 강원과 전북은 사양토(강원 76%, 전북 64%), 경북은 양토(42%)와 사양토(35%)가 많았다. 토양의 화학성은 pH 5.7, 유기물 $27.6g\;kg^{-1}$, 유효인산 $765mg\;kg^{-1}$, 치환성의 칼륨, 칼슘 및 마그네슘은 각각 1.16, 6.1, $1.6cmol_c\;kg^{-1}$, 양이온 치환용량은 $9.2cmol_c\;kg^{-1}$이었다. 고랭지 주요작물의 시비실태 조사결과 화학비료 시비량은 토양검정 시비량에 비하여 감자는 질소 1.7~2.0배, 인산 4.2~7.0배, 칼리 1.4~2.2배, 배추는 질소 1.4~1.6배, 인산 4.6~8.3배, 칼리 3.5~4.2배, 무는 질소 1.2~1.3배, 인산 4.2~7.2배, 칼리 3.0~3.6배였다. 이와 같은 결과는 모든 작물에서 토양의 축적된 화학성분과 작물의 양분 요구도을 고려하지 않고 관행적으로 시비하고 있음을 보여 주고 있다. 특히 인산과 칼리를 과용하고 있는 것은 시급히 개선해야 할 사항으로 토양검정기준에 의한 시비관리 및 영농기술 지도가 필요할 것으로 생각된다.

하해혼성 평야지 논토양에서 유기물 장기 연용이 토양의 이화학적 특성 변화 및 질소 흡수에 미치는 영향 (Effect of Long-Term Annual Dressing of Organic Matter on Physico-Chemical Properties and Nitrogen Uptake in the Paddy Soil of Fluvio-Marine Deposit)

  • 양창휴;정지호;김택겸;김선;백남현;최원영;김영두;정원교;김시주
    • 한국토양비료학회지
    • /
    • 제43권6호
    • /
    • pp.981-986
    • /
    • 2010
  • 본 연구는 비료 및 유기자원을 30년 연용한 전북통 (미사질양토) 논토양에서 수행하였다. 관행 (NPK), NPK+볏짚, NPK+볏짚퇴비와 질소 시비수준을 0, 100, 150, 200, 250 kg $ha^{-1}$로 처리하였으며 토양의 이화학성 변화 및 유기탄소 함량, 토양과 식물체의 질소 흡수를 조사 및 분석한 결과는 다음과 같다. 관행구 (NPK)에 비하여 NPK+볏짚퇴비구에서 토양경도는 15.7 mm에서 12.5 mm로, 용적밀도는 1.381 Mg $m^{-3}$에서 1.244 Mg $m^{-3}$로 유의하게 낮아지는 결과를 보이고 있어 볏짚퇴비 시용에 따른 물리성 개선효과가 인정되었다. 관행구에 비하여 NPK+볏짚퇴비구에서 유효인산 함량은 96 mg $kg^{-1}$에서 133 mg $kg^{-1}$으로, 유효규산 함량은 81 mg $kg^{-1}$에서 116 mg $kg^{-1}$로 유의하게 많아졌고 CEC는 9.8 $cmol_c\;kg^{-1}$ 에서 11.4 $cmol_c\;kg^{-1}$로 유의하게 높아지는 결과를 보이고 있어 볏짚퇴비 시용에 따른 화학성 개량효과가 인정되었다. 토양유기탄소 함량은 처리별 유의적인 차이가 있었으며 토양깊이 0~7.5 cm에서는 관행구에 비하여 NPK+볏짚구, NPK+볏짚퇴비구에서 유의적으로 높았다. 시비 질소흡수량은 관행구 (질소 시비수준 100 kg $ha^{-1}$)에 비하여 NPK+볏짚구 (질소 시비수준 250 kg $ha^{-1}$) 및 NPK+볏짚퇴비구 (질소 시비수준 200, 250 kg $ha^{-1}$)에서 유의하게 많아지는 결과를 나타냈다. 질소이용률은 관행구 (질소 시비수준 100 kg $ha^{-1}$)에 비하여 NPK+볏짚퇴비구 (질소 시비수준 100, 150 kg $ha^{-1}$)에서 유의하게 높아지는 결과를 나타냈다. 논토양에서 유기자원 시용은 물리성 개선 및 비옥도를 향상시켜 벼의 시비질소흡수량 증가로 질소이용률을 높이는데 크게 기여한 것으로 생각된다.

폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로 (Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations)

  • 김광은;김성준;김현준;장한나;김형섭;박용하;손요환
    • 환경생물
    • /
    • 제38권4호
    • /
    • pp.733-743
    • /
    • 2020
  • 본 연구는 폐탄광에서 산림으로 복구된 지역의 임목, 낙엽층, 토양, 그리고 산림의 총 탄소 저장량을 추정하고, 수종별 탄소 저장량 차이를 비교하기 위해 수행되었다. 이를 위하여 강원도, 경상북도, 전라남도의 폐탄광 산림복구지에서 자작나무, 잣나무, 소나무류(소나무, 리기다소나무, 곰솔)가 서로 다른 시기에 식재된 산림과 주변의 일반 산림을 조사하였다. 일반 산림에 비하여 폐탄광 산림복구지 내 낙엽층 및 토양(ton C ha-1; 자작나무: 3.31±0.59 및 28.62±2.86, 잣나무: 3.60±0.93 및 22.26±5.72, 소나무류: 4.65±0.92 및 19.95±3.90), 그리고 산림의 총 탄소 저장량(ton C ha-1; 자작나무: 54.81±7.22, 잣나무: 47.29±8.97, 소나무류: 45.50±6.31)은 낮게 나타났으며, 임목 탄소 저장량(ton C ha-1; 자작나무: 22.57±6.18, 잣나무: 21.17±8.76, 소나무류: 20.80±6.40)은 자작나무가 식재된 곳에서만 낮은 결과가 나타났다. 수종별로 토양 탄소 저장량을 제외한 임목, 낙엽층, 산림의 총 탄소 저장량에서 차이가 나타나지 않았으며, 임목 및 산림의 총 탄소 저장량은 복구 후 경과시간에 따라 증가하는 경향을 보였다. 한편, 폐탄광 산림복구지의 자작나무와 소나무류에서 토양 pH 및 CEC가 낮게 나타났으며, 수종별 불안정탄소, 유효인산, 미생물 바이오매스 탄소가 일반 산림토양보다 2배 이상 낮은 결과를 보였다. 폐탄광 산림복구지에 석회 및 유기질 비료의 시비와 경운을 통해 토양 성질을 개선하고, 가지치기 및 간벌 등과 같은 산림관리로 임목 생육을 증진시키면 폐탄광 산림복구지 내 탄소 저장량을 증가시킬 수 있을 것으로 기대된다.

한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成) (Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals)

  • 엄명호;임형식;김태순
    • 한국토양비료학회지
    • /
    • 제25권3호
    • /
    • pp.202-212
    • /
    • 1992
  • 화강암(花崗岩), 화강편마암(花崗片麻岩), 석회암(石灰岩), 혈암(頁岩), 현무암등(玄武岩等) 우리나라의 주요(主要) 모암(母岩)에서 발달(發達)된 토양(土壤)을 대상(對象)으로 점토광물(粘土鑛物)의 생성과정(生成過程)을 구명(究明)하기 위하여 모암(母岩)의 조암광물(造岩鑛物)과 토양(土壤)으로 부터 분리(分離)한 모래와 미사(微砂)의 1차광물(次鑛物) 분포(分布)와 광물학적(鑛物學的) 특성변화(特性變化)를 보고(報告)한 바 있다. 본보(本報)에서는 점토(粘土)에 대한 화학조성(化學組成), 광물(鑛物)의 분리동정(分離同定) 및 특성변화(特性變化)를 기(旣) 보고(報告)된 성적(成績)과 관련(關聯)시켜 고찰(考察)함으로써 각 토양점토광물(土壤粘土鑛物)의 풍화생성과정(風化生成過程)을 모암(母岩)의 조암광물(造岩鑛物)로 부터 종합적(綜合的)으로 구명(究明)코자 하였으며, 아울러 점토광물(粘土鑛物)의 정량화(定量化)를 시도(試圖)하였던 바 그 결과를 요약(要約)하면 다음과 같다. 1. 점토(粘土)의 양(陽)이온치환용량(置換容量)은 vermiculite, chlorite 또는 illite 함량(含量)이 많을 수록 크며, vermiculite 함량(含量)이 많은 점토(粘土)라도 수산화물(水酸化物)의 층간침입(層間侵入) 정도(程度)가 크면 양(陽)이온치환용량(置換容量)은 적어지는 경향(傾向)이었다. 2. 화강암(花崗岩)과 화강편마암(花崗片摩岩)의 장석류(長石類)는 kaolin광물(鑛物)로 대부분 풍화(風化)되었고, 이밖의 운모광물(雲母鑛物), 연이석(緣泥石), 각섬석(角閃石), 휘석(輝石)으로 부터 생성(生成)된 illite, chlorite, vermiculite는 풍화중간(風化中間)에 illite/vermiculite와 illite/chlorite, 그리고 chlorite/vermiculite의 혼층단계(混層段階)를 거치게 되고 최종적(最終的)으로 kaolin광물(鑛物)로 풍화(風化)되는 것으로 판단(判斷)되며 vermiculite에 수산화물질(水酸化物質)의 층간침입정도(層間侵入程度)는 표토(表土)로 갈수록 증대(增大)되는 경향(傾向)이었다. 3. 석회암(石灰岩) 토양(土壤)의 점토(粘土)에는 smectite가 상당량(相當量) 함유(含有)되었으며, 이는 Mg농도(濃度)가 높은 토양용액(土壤溶液)으로 부터 직접(直接) 침전(沈澱)되어 생성(生成)되었거나, 운모(雲母) 또는 chlorite에서 유래(由來)된 vermiculite의 변성작용(變成作用)에 의해 생성(生成)되는 것으로 해석(解釋)되었다. 4. 혈암(頁岩) 토양(土壤)의 점토(粘土)에 다량(多量) 존재(存在)하는 illite는 주로 풍화(風化)에 저항성(抵抗性)이 큰 미립자(微粒子)의 함수백운모(含水白雲母)로 유래(由來)되는 것으로 보이며, 토양(土壤)의 발달정도(發達程度)에 따라 함수백운모(含水白雲母)${\rightarrow}$illite/vermiculite 풍화단계(風化段階)(대구통(大邱統))와 풍화(風化)가 더욱 진전(進展)된 함수백운모(含水白雲母)${\rightarrow}$illite/vermiculite${\rightarrow}$vermiculite${\rightarrow}$kaolin의 풍화단계(風化段階)(부여통(扶餘統))로 구분(區分)되었다. 5. 현무암(玄武岩)의 사장석(斜長石)은 주로 kaolin광물(鑛物)로 풍화(風化)되고, 휘석(輝石)은 휘석(輝石)${\rightarrow}$chlorite${\rightarrow}$chlorite/vermiculite${\rightarrow}$kaolin의 과정(過程)을 밟지만 illite와 illite/vermiculite의 존재(存在)로 보아 휘석(輝石)${\rightarrow}$chlorite${\rightarrow}$illite의 풍화과정(風化過程)도 인정(認定)되었다. 6. 열분석(熱分析)(DTA, TG)에 의한 점토광물(粘土鑛物)의 정량결과(定量結果), vermiculite 함량(含量)은 석회암(石灰岩) 장성통(長城統)에서 21.7%로 가장 많았고, 혈암(頁岩)의 부여통(扶餘統)은 9.2%, 대구통(大邱統)은 5.4%로 적었으며, 나머지 토양(土壤)은 8.8%~28.3% 함유(含有)하고 있었다. Kaolin 광물(鑛物)의 함량(含量)은 화강편마암(花崗片麻岩)의 아산통(雅山統)에서 32.7%, 현무암(玄武岩)의 구엄통(舊嚴統)에서 32.0%로 많았고 석회암(石灰岩)의 평안통(平安統) 14.9%, 장성통(長城統) 9.4%로 적었으며, 혈암(頁岩)의 대구통(大邱統)에서 8.9%로 가장 적었다. 이밖의 토양(土壤)에서의 kaolin 함량(含量)은 20.0%~28.6%이었다. Gibbsite함량(含量)은 화강암(花崗岩)의 월정통(月精統)에서 3.9%, 차항통(車項統)에서 2.3%, 화강편마암(花崗片麻岩)의 아산통(雅山統)에서 1.4%, 청산통(靑山統)에서 4.5%, 그리고 현무암(玄武岩)의 장성통(長城統)에서 3.6%이었다.

  • PDF