• Title/Summary/Keyword: Cathodic arc evaporation

Search Result 4, Processing Time 0.021 seconds

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

Influence of Deposition Temperature on the Film Growth Behavior and Mechanical Properties of Chromium Aluminum Nitride Coatings Prepared by Cathodic Arc Evaporation Technique

  • Heo, Sungbo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.139-143
    • /
    • 2021
  • Cr-Al-N coatings were deposited onto WC-Co substrates using a cathodic arc evaporation (CAE) system. CAE technique is recognized to be a very useful process for hard coatings because it has many advantages such as high packing density and good adhesion to metallic substrates. In this study, the influence of deposition temperature as a key process parameter on film growth behavior and mechanical properties of Cr-Al-N coatings were systematically investigated and correlated with microstructural changes. From various analyses, the Cr-Al-N coatings prepared at deposition temperature of 450℃ in the CAE process showed excellent mechanical properties with higher deposition rate. The Cr-Al-N coatings with deposition temperature around 450℃ exhibited the highest hardness of about 35 GPa and elastic modulus of 442 GPa. The resistance to elastic strain to failure (H/E ratio) and the index of plastic deformation (H3/E2 ratio) were also good values of 0.079 and 0.221 GPa, respectively, at the deposition temperature of 450℃. Based on the XRD, SEM and TEM analyses, the Cr-Al-N coatings exhibited a dense columnar structure with f.c.c. (Cr,Al)N multi-oriented phases in which crystallites showed irregular shapes (50~100nm in size) with many edge dislocations and lattice mismatches.

Wear Characterisitics of TiN-coated Boron Cast Iron by Arc Evaporation Process (CAE 증착기술에 의해 TiN이 증착된 보론주철의 마모거동)

  • Song, Kun;Yoon, Eui-Sung;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • In order to gain better understanding of wear behaviors of TiN-coated boron cast iron, tests and analyses were conducted with block-on disc type tribometer. TiN layer of thickness $2 \mu m$ and $4 \mu m$, coated by cathodic arc evaporation process, were experimentally investigated with the variation of applied load and sliding speed under dry sliding condition. Wear characteristics were expressed in terms of the three-dimentional wear map as well as the wear rate vs sliding speed and load. Comparisons of wear and friction characteristics between coated cast irons and uncoated cast irns were also made. Wear mechanism of TiN layer was explained in view of surface interaction between the mating surfaces. The thicker coating exhibited higher hardness and adhesion strength. the significance of stresses at the surface and in the subsurface was briefly discussed in relation to the wear behavior.

Substrate Cleaning Effect by Cathodic Vacuum Arc Evaporation (음극 진공 아크 증발에 의한 기판 청정)

  • Gwon, O-Jin;Kim, Mi-Seon;Lee, Jeong-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.92.1-92.1
    • /
    • 2017
  • 고경도 질화막 합성과 밀착력 향상을 위한 기판 청정 기술은 밀접한 상관관계가 있다. 음극 진공 아크 증발원을 이용하여 기판 청정을 실시하였으며, 기판 전압이 증가함에 따라 기판 청정 효과가 증가하였으나, 그 역효과 또한 확인할 수 있었다. 특히 기판 전압 인가부의 전극 접촉부 위치에 따라 청정 형상이 크게 영향을 받음을 확인하였다. 기판 청정 후 고경도 질화막을 형성시켜 100N 이상의 밀착력 확인하였다.

  • PDF