• 제목/요약/키워드: Cathodic Charging with Hydrogen

검색결과 7건 처리시간 0.021초

압력용기용 Cr-Mo강의 수소취화 특성 (The Characteristics of the Hydrogen Embrittlement for the Cr-Mo Steels in Use of Pressure Vessel)

  • 이휘원;양현태;김상태
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1107-1113
    • /
    • 2002
  • This study presents the hydrogen emblittlement in the metal, which decreases the ductility and then induces the brittle fracture. The contribution deals with the effect of strain rate and notch geometry on hydrogen emblittlement of 1.25Cr-0.5Mo and 2.25Cr-1Mo steels, which are in use at high pressure vessel. Smooth and notched specimens were examined to obtain the elongation and tensile strength. For charging the hydrogen in the metal, the cathodic electrolytic method was used. In this process, current density is maintained constant. The amount of hydrogen penetrated in the specimen was detected by the hydrogen determenator(LECO RH404) with the various charging time. The distribution of hydrogen concentration penetrated in the specimen was obtained by finite element analysis. The amount of hydrogen is high in smooth specimen and tends to concentrate in the vicinity of surface. The elongation and tensile strength decreased with the passage of charging time in 1.25Cr-0.5Mo and 2.25Cr-1Mo steels. The elongation increased and tensile strength decreased as strain rate increased. As a result of this study, it is supposed that 1.25Cr-0.5Mo steel is more sensitive than 2.25Cr-lMo steel in hydrogen embrittlement. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

자동차 박강판용 고강도 DP강 표면층의 수소거동 (The Hydrogen Behavior of Surface Layers of High Strength DP Thin Sheet Steels for Automobile)

  • 박재우;강계명
    • 한국가스학회지
    • /
    • 제14권6호
    • /
    • pp.38-43
    • /
    • 2010
  • 자원 부족과 환경규제의 강화에 따라 자동차 강판재의 고강도화와 박강판화가 주요 이슈로 대두되고 있다. 그러나 고강도 강판재 사용에 있어 수소취성은 기계적 성질 저하의 문제가 되고 있다. 본 연구에서는 개발중인 590MPa급 DP강을 대상으로 조성 및 조직특성에 따른 표면층에서의 수소의 거동에 대해 연구하였다. 수소주입은 음극전기분해법을 이용하여 강제 주입시켰고, 수소주입조건에 따른 수소주입량과 표면층 조직관찰 및 미소경도시험 결과의 관계로 부터 표면층의 수소거동을 평가하였다.

LASER SURFACE ANNEALING FOR IMPROVING HYDROGEN EMBRlTTLEMENT RESISTANCE OF AGED INCONEL 718: EVALUATION OF THE EFFECTS OF PRECIPITATES

  • Liu, Liufa;Tanaka, Katsumi;Hirose, Akio;Kobayashi, Kojiro F.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.570-576
    • /
    • 2002
  • Application of the aged Inconel 718 in hydrogen environment is seriously restraint by its high hydrogen embrittlement (HE) sensitivity. m previous researches, we have suggested the possibility and applicability of the laser surface annealing (LSA) process in improving the HE resistance of this alloy. Sequentially, a study on the effects of the precipitates in the Inconel 718 on its HE sensitivity was conducted in this research. Firstly, flat bar specimens were heat-treated to obtain various kinds of precipitation microstructures concerning the ${\gamma}$" phase and the 6 phase. Hydrogen was charged into the specimen by a cathodic charging process. The loss in reduction of area (RA) caused by hydrogen charging was used to assess the HE sensitivity. The HE sensitivity of the alloy was lowered with decreasing the volume fraction of ${\gamma}$". Moreover, it was possible to increase the HE resistance of the aged alloy by dissolving the $\delta$ phase, keeping the strength at the same level as that of the common aged alloy. Thus, we concluded that both the $\delta$ phase and the ${\gamma}$" phase affected the HE sensitivity of Inconel 718. Next, two kinds of notch tensile specimens were fabricated, one kind having $\delta$ phase and the other having no $\delta$ phase. All these specimens were aged via the same aging heat treatment process. The LSA process annealed a thin layer of the notch bottom of each specimen. One specimen of each kind was charged with hydrogen by the cathodic hydrogen charging process. Loss in the notch tensile strength (NTS) caused by hydrogen was used to evaluate the HE sensitivity. It was found that while the HE sensitivity of conventionally aged Inconel 718 was decreased by the LSA process, the HE sensitivity of the $\delta$-free aged Inconel 718 could further be decreased. Therefore, for applications in hydrogen environments, it is possible to fabricate alloys with both good HE resistance and high strength by controlling the precipitation conditions, and to improve HE resistance further via applying the LSA process.

  • PDF

전자비임 용접한 250 및 300 Grade 18% Ni Maraging 강의 수소취화 거동에 관한 연구 (A study of hydrogen embrittlement behavior in E.B welded 250,300 grade 18% Ni maraging steel)

  • 윤한상;정병호
    • Journal of Welding and Joining
    • /
    • 제5권2호
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of applied stress, current density and heat-treatment after welding on the time to fracture, fracture behavior was investigated by the method of constant load tensile testing under catholic charging with hydrogen in E.B. welded 250,300 Grade 18% Ni Maraging steel sheet. The main results obtained are as follows: 1. All specimen showed the characteristic delayed failure and the time to fracture showed decreasing tendency with the increase in current density and applied stress. 2. Hydrogen embitterment susceptibility of notched specimen after solution-treatment and aging after welding was more increased than that of aged smooth specimen and as welded specimen. 3. Fracture surface showed a typical intergranular fracture on the border, a dimple pattern in the center of specimen and some quasi-cleavage fracture between the intergranular and the dimple.

  • PDF

EFFECTS OF NITROGEN AND CARBON ION IMPLANTATION INTO AUSTENITIC STAINLESS STEEL ON HYDROGEN ABSORPTION

  • Terashima, K.;Minegishi, T.;Matsusaka, K.
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.494-497
    • /
    • 1996
  • The effect of implanted nitrogen and carbon ion into SUS 304 on the absorption of hydrogen by cathodic chaging were studied. Implantations of $N^+$, $C^+$ were performed with doses of $3\times10^{17}$ ions $\textrm{cm}^2$ and $5\times10^{17}N^+cm^2$, and $5\times10^{17}C^+cm^2$, at an energy of 90 keV. Nitrides and carbide were investigatedby X-ray diffraction, Auger electron spectroscopy (AES) and scanning electron microscope (SEM). Formation of hydrides during cathodic charging were depressed by a modified surface layer. It is concluded that the both nitrides and carbides act as the barrier of hydrogen migration and the catalyst of desorption of cathodically charged hydrogen.

  • PDF

중성의 염화물 환경 내 자동차용 초고강도강의 부식반응에 기인한 수소원자의 발생 및 투과 메커니즘 (Mechanistic Studies on the Hydrogen Evolution and Permeation of Ultra-Strong Automotive Steel in Neutral Chloride Environments)

  • 황은혜;류승민;김성진
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.428-434
    • /
    • 2018
  • Hydrogen evolution on a steel surface and subsequent hydrogen diffusion into the steel matrix are evaluated using an electrochemical permeation test with no applied cathodic current on the hydrogen charging side. In particular, cyclic operation in the permeation test is also conducted to clarify the corrosion-induced hydrogen evolution behavior. In contrast to the conventional perception that the cathodic reduction reaction on the steel in neutral aqueous environments is an oxygen reduction reaction, this study demonstrates that atomic hydrogen may be generated on the steel surface by the corrosion reaction, even in a neutral environment. Although a much lower permeation current density and significant slower diffusion kinetics of hydrogen are observed compared to the results measured in acidic environments, they contribute to the increase in the embrittlement index. This study suggests that the research on hydrogen embrittlement in ultra-strong steels should be approached from the viewpoint of corrosion reactions on the steel surface and subsequent hydrogen evolution/diffusion behavior.

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A.;Khorkounov, B.;Schultz, L.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.327-335
    • /
    • 2006
  • In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.