Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.7.428

Mechanistic Studies on the Hydrogen Evolution and Permeation of Ultra-Strong Automotive Steel in Neutral Chloride Environments  

Hwang, Eun Hye (Department of Advanced Materials Engineering, Sunchon National University)
Ryu, Seung Min (Department of Advanced Materials Engineering, Sunchon National University)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Korean Journal of Materials Research / v.28, no.7, 2018 , pp. 428-434 More about this Journal
Abstract
Hydrogen evolution on a steel surface and subsequent hydrogen diffusion into the steel matrix are evaluated using an electrochemical permeation test with no applied cathodic current on the hydrogen charging side. In particular, cyclic operation in the permeation test is also conducted to clarify the corrosion-induced hydrogen evolution behavior. In contrast to the conventional perception that the cathodic reduction reaction on the steel in neutral aqueous environments is an oxygen reduction reaction, this study demonstrates that atomic hydrogen may be generated on the steel surface by the corrosion reaction, even in a neutral environment. Although a much lower permeation current density and significant slower diffusion kinetics of hydrogen are observed compared to the results measured in acidic environments, they contribute to the increase in the embrittlement index. This study suggests that the research on hydrogen embrittlement in ultra-strong steels should be approached from the viewpoint of corrosion reactions on the steel surface and subsequent hydrogen evolution/diffusion behavior.
Keywords
automotive steel; corrosion; hydrogen diffusion; permeation; chloride environment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Komazaki, A. Koyama and T. Misawa, Mater. Trans., 43, 2213 (2002).   DOI
2 H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016).   DOI
3 X. Zhu, W. Li, T. Y. Hsu, S. Zhou, L. Wang and X. Jin, Scr. Mater., 97, 21 (2015).   DOI
4 E. H. Hwang, H. G. Seong and S. J. Kim, Korean J. Met. Mater., to be submitted (2018).
5 ISO 17081, Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique (2004).
6 S. J. Kim and K. Y. Kim, Scr. Mater., 66, 1069 (2012).   DOI
7 ASTM G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Ma- terials to Environmentally Assisted Cracking (2013).
8 S. J. Kim, J. S. Park, E. H. Hwang, S. M. Ryu, H. G. Seong and Y. R. Cho, Int. J. Hydrogen Energy, to be submitted (2018).
9 T. Tsuru, Y. Huang, Md. R. Ali and A. Nishikata, Corros. Sci., 47, 2431 (2005).   DOI
10 E. Akiyama, K. Matsukado, M. Wang and K. Tsuzaki, Corros. Sci., 52, 2758 (2010).   DOI
11 E. Akiyama, K. Matsukado, S. Li and K. Tsuzaki, Appl. Surf. Sci., 257, 8275 (2011).   DOI
12 T. Kamimura, S. Hara, H. Miyuki, M. Yamashita and M. Uchida, Corros. Sci., 48, 2799 (2006).   DOI
13 S. Takagi, Y. Toji, M. Yoshino and K. Hasegawa, ISIJ Int., 52, 316 (2012).   DOI
14 Y. Mukai, Kobelco Technol. Rev., 26, 26 (2005).
15 S. Brauser, L. A. Pepke, G. Weber, M. Rethmeier, Mater. Sci. Eng., A, 527, 7099 (2010).   DOI
16 JP. Hirth, Metall. Trans. A, 11A, 861 (1980).
17 M. Wang, E. Akiyama and K. Tsuzaki, Scr. Mater., 52, 403 (2005).   DOI
18 G. Sandoz, Met. Trans., 3, 1169 (1972).   DOI
19 G. Lovicu, M. Bottazzi, F. D’Aiuto, M. D. Sanctis, A. Dimatteo, C. Santus and R. Valentini, Metall. Mater. Trans. A, 43, 4075 (2012).   DOI
20 T. Shiraga, N. Ishikawa, M. Ishiguro, E. Yamashita and S. Mizoguchi, Tetsu-to-Hagane, 82, 177 (1996).   DOI
21 J. Li, J. Wu, Z. Wang, S. Zhang, X. Wu, Y. Huang and X. Li, Int. J. Hydrogen Energy, 42, 22175 (2017).   DOI