• Title/Summary/Keyword: Cathodic

Search Result 752, Processing Time 0.021 seconds

Numerical analysis results of the cathodic protection for the underground steel pipe by anode installation method

  • Jeong, Jin-A;Choo, Yeon-Gil;Jin, Chung-Kuk;Park, Kyeong-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1212-1216
    • /
    • 2014
  • This study aims to find out the best anode location for buried pipelines. Numerical simulation program known as CATPRO (Elsyca, Belgium) were used for confirming the best location of anodes and the effects of impressed current cathodic protection system. Applied conditions for numerical simulation were similar to on-site environmental conditions for optimal application of cathodic protection system. Used criterion of cathodic protection was NACE SP 0169, which describes that minimum requirement for cathodic protection is -850mV vs. CSE. Various layouts for anodes' installation were applied, which were distance between anodes, anode installation location, and applied current. The areas where cathodic protection potential was lower than -850mV vs. CSE was limited up to 50m from anode installation locations. It was founded numerical analysis obtain cost-effective and efficient cathodic protection methods before design and application the impressed cathodic protection system to on-site environment.

Influences of Coatings and Solution Corrosivity on Cathodic Protection of Metallic Materials

  • Yoo, Y.R.;Chang, H.Y.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.106-111
    • /
    • 2006
  • Painting has protected metallic stack but the paint films may be degraded and corrosion problem can be arisen. To protect the painted metal stack, cathodic protection can be applied. If cathodic protection is applied to bare metal, only small area may be protected. However, if cathodic protection is applied to painted metal surface, large area can be protected and the lifetime of paint films can be extended. High corrosion resistant alloys were corroded at a Flue Gas Desulfurization (FGD) facility of power plant within a short period and thus cathodic protection can be used to protect these metals. On the base of computer simulation, if cathodic protection is applied to bare metal in a FGD environment, it was estimated that applied current could almost be spent to protect area near the anode. However, if cathodic protection is applied to high resistant-coated metal, the much larger area from the anode could be effectively protected.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

Permeability and Dissolvability of Cathodic Electrolyzed Water for Electrophoretic Gel and Green Tea Components (전기영동 겔과 녹차성분에 대한 환원전리수의 침투력과 용해력)

  • Ryoo Kun-Kul;Lee Yoon-Bae;Lee Jong-Kwon;Lee Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • The permeability of cathodic electrolyzed water toward electrophoretic gel and dissolvability of cathodic electrolyzed water toward green tea components were compared with those of general waters in this investigation. Stained band intensities of the proteins by CBB-R prepared in cathodic electrolyzed water were compared with those in deionized water for various time intervals. Proteins were stained first by CBB-R in cathodic electrolyzed water as compared with those by CBB-R in deionized water. Moreover, cathodic electrolyzed water showed dramatically enhanced solubility toward green tea components at $25^{\circ}C$ than general waters. These results suggest much greater permeability and dissolvability of cathodic electrolyzed water than those of general waters.

  • PDF

A Study on the Effect of the ICCP System in Reinforced Concrete Specimens of Slab Type

  • Jeong, Jin-A;Ko, Kwon-Heum;Kim, Mun-Su;Lee, Du-Hyeong
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.272-278
    • /
    • 2018
  • Reinforced concrete (RC) has been used as a construction material in various environments, such as airports, bridges, and ocean concrete structures, etc. Over time, however, rebar in the concrete is prone to corrosion from environmental forces and structural defects of the concrete. Cathodic protection (CP) was invented to prevent problems with corrosion and is widely used for different applications. Cathodic protection is divided into two types: sacrificial anode cathodic protection (SACP) and impressed current cathodic protection (ICCP). There are several limitations to the use of sacrificial anode cathodic protection in complex reinforced concrete structures, including concrete resistivity, throwing power of the CP, and environmental conditions. These limitations can affect the protection performance of SACP. Therefore, we used impressed current cathodic protection in our study. We tested Ti-Mesh, Ti-Rod, and Ti-Ribbon anodes in slab type reinforced concrete specimens. Electrochemical tests were conducted to confirm the impressed current cathodic protection performance under different environmental conditions.

Advanced Cathodic Protection Modeling Associated with Coating Degradation Conditions

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.177-183
    • /
    • 2009
  • There are two effective methods in use to protect ship ballast tank against corrosion. One is paint coating and the other cathodic protection(CP). The conventional cathodic protection design has mainly relied on the expert's experience. During the last two decades computer modeling has been significantly developed as an advanced design technology for cathoidic protection systems not only for ships, but also for offshore structures. However the present computer modeling of cathodic protection systems have some limitations simulating corrosion in the ballast tank with a deteriorated coating. In this study, "coating breakdown factor" considering coating degradation states with time has been attempted to improve the cathodic protection modeling using the data from literatures.

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Fracture Toughness Evaluation of Natural Gas Pipeline under the Cathodic Protection

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.133-138
    • /
    • 2009
  • For the corrosion protection of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed the CTOD testing with various test conditions, such as testing rate and potential. The CTOD of the base metal and the weld metal showed a strong dependence of the test conditions. The CTOD decreased with decreasing testing rate and with increasing cathodic potential. The morphology of the fracture surface showed the quasi-cleavage at low testing rate and cathodic overprotection. The low CTOD was caused by hydrogen embrittlement at crack tip.

A STUDY ON COPPER DEPOSITION PROCESS DURING ANODIC OXIDATION OF ALUMINIUM ALLOY

  • Koh, I.S.;Han, S.H.;Shin, D.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.444-446
    • /
    • 1999
  • The structure and composition of anodic films, formed on 6063 commercial aluminium alloy at constant current density of $1.5A/^dm2$ with various superimposed cathodic current ratio, in the range 0~33%, in the 11% $H_2SO_4$ with various concentration of $CuSO_4{\cdot}5H_2O$, in the range 0~75 g/l, without cathodic current are generally porous-type and no sign of Cu co-deposition appearance, suggesting that cathodic current is an important factor in the Cu co-deposition. Comparison with the anodic film thickness measurement results obtained from anodic film formed by direct anodic current and anodic film formed by superimposed various portion of cathodic current, the portion of cathodic current of input current increases with decrease of anodic film thickness and increases with increase of concentration of $Cu_2S{\;}and{\;}Cu_2O$ in the anodic film.

  • PDF