• Title/Summary/Keyword: Cathode.

Search Result 2,940, Processing Time 0.025 seconds

Study of Li-Ion Diffusion and Phase Transition in Cathode of Li-Ion Battery (리튬 이차전지의 양극 내부 이온 확산 및 상변화 특성 연구)

  • Kim, Sooil;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.665-667
    • /
    • 2013
  • Metal ions show various transitions in the cathode of a lithium-ion battery. The diffusion process of lithiumions and the phase transition in the cathode need to be thoroughly understood for the advanced design of an improved lithium-ion battery. Here, we employ a phase field model to simulate the diffusion of lithiumions and to study the phase transition in the cathode.

Particle Simulation on the Effect of Grid Cathode Geometry in SCBF Device (SCBF 장치에서 그리드 음극 구조의 영향에 대한 입자 시뮬레이션)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.742-747
    • /
    • 2007
  • In 2-dimensional SCBF (Spherically Convergent Beam Fusion) device, the effect on neutron production rate of the grid cathode geometry was simulated. The motion of Particles was tracked using Monte Carlo Method including the atomic and molecular collision processes and potential distribution was calculated by Finite Element Method, Main processes of the discharge were the ionization of $D_2$ by fast $D_2^+\;ion$. As the number of cathode rings was small and the size of grid cathode decreased, the ion current increased and neutron production rate will also increase. The star mode discharge which is a very important characteristic in SCBF device, was confirmed by the ionization position.

A Study on the Electrochemical Properties of the Cathode upon Different Kinds of Activated carbon in Zinc/Air Battery (활성탄 종류에 따른 아연공기전지용 Cathode의 전기화학적 특성 연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • The voltage profile of Zinc/Air battery during discharge has very flat pattern in a given voltage range, But, if not enough the porosity in cathode, as a result of that capacity, energy and discharge voltage of batteries become low. Therefore, we focused the pore effects in activated carbon for cathode. We examined discharge voltage, specific capacity, specific energy, resistance and characteristics during the GSM pulse discharge upon different kinds of activated carbon in Zinc/Air battery, Also we measured porosity of the air cathode according to the ASTM. So we achieved improvement of specific capacity, specific energy and discharge voltage according to increase meso pores of activated carbon. We found the optimized activated carbon material for Zinc/Air battery.

A study on the relationships between plasma parameters and magnetic field (플라즈마 파라메타와 자계의 상관관계에 관한 연구)

  • 김두환;장윤석;조정수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.426-431
    • /
    • 1996
  • It is well known that the understanding of the complex mechanism of magnetoplasma is closely related with understanding of the collective behavior of discharge plasma parameters such as the cathode-sheath potential, cathode-sheath thickness, electron temperature, electron density, and ambipolar diffusion. In this paper, some of the relationships between these plasma parameters and magnetic field is investigated experimentally with a Langmuir probe in the magnetoplasma generated by D.C diode system. It is found that when magnetic field is increased, cathode-sheath potential, cathode-sheath thickness, and ambipolar diffusion are decreased. In addition, peak ion density obtained as a parameter of ionic signal voltage by Faraday cup method is independent of magnetic field. (author). 9 refs., 11 figs.,1 tab.

  • PDF

Changes in the Optogalvanic Signal Amplitude in a Hollow Cathode Discharge

  • Lee, Jun-Hoi;Koo, Kyung-Wan;Lee, Ki-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.212-216
    • /
    • 2009
  • The spatial distribution of the optogalvanic (OG) signal in argon at the 801.489 nm ($1s_5-2p_8$ transition at the metastable level in Paschen notation) was investigated in the radial direction of a hollow cathode discharge tube. The results of this experiment showed that the OG signal amplitude decreases in accordance with the following two conditions; first, the level of discharge current and second, the distance from the cathode dark space. These results can be quantified by analyzing the electron density profile along the discharge regions, which can directly influence the collisional ionization induced by electron impact.

The Dielectric Barrier micro-hollow cathode structure and its upper pD limitation in alternative current driving for flat panel light source (광원을 위한 AC구동 유전체장벽 미세공음극 구조와 상한 pd 제한조건)

  • Park K. W.;Lee T. I.;Jegal J. P.;Baik H. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.45-47
    • /
    • 2005
  • The Dielectric Barrier micro-hollow cathode structure and it's upper pD limitation are investigated for determining of optimum hollow cathode discharge condition. In experiment, discharge is sustained by AC diriving and investigated gas is pure Xe. From Experiment, Optimum pD range is lower than 0.72 torr.cm at pure Xe and Cu cathode.

  • PDF

ON THE DEVELOPMENT OF A DISTILLATION PROCESS FOR THE ELECTROMETALLURGICAL TREATMENT OF IRRADIATED SPENT NUCLEAR FUEL

  • Westphal, Brian R.;Marsden, Kenneth C.;Price, John C.;Laug, David V.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.163-174
    • /
    • 2008
  • As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed.

Electric Conduction Properties of NaCl Electrolyte as a Function of Electrode Materials (전극재료에 따른 NaCl 전해질의 전기전도특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2026-2031
    • /
    • 2010
  • The electrical characteristics of galvanic cell which is composed of the cathode electrode(graphite, carbon and copper) and the anode electrode(Zn and Mg) were investigated. For this research as electrolyte 2~12 wt% NaCl aqueous solution were used. At graphite cathode electrodes which use Zn and Mg with the anode electrode, the open circuit voltage was 1.3V most highly. The maximum output power increased as the electrolyte concentration increased, due to a increase in ion density. When Zn and Mg with the anode electrode, the maximum output power respectively was evaluated as 2.2mW and 5.5mW about the graphite cathode electrode in the NaCl 4wt%. The research results indicated that the output power of cell which is composed with graphite with the cathode and Mg with the anode was most excellent and the efficiency of the cell could be enhanced by increasing the electrolyte concentration.

$^7Li$ NMR studies of LiMn$_2$O$_4$ prepared by eutectic self-mixing method without any mixing

  • Lee, Youngil;Kyooseung Han;Hyunkoo Kang;Jaebum Choo
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.85-85
    • /
    • 2002
  • Lithiated transition metal oxides such as LiMn2O4, Lil-xMnO$_2$, LiNiO$_2$, LiCoO$_2$, and their solid solution phases are used as cathode materials for lithium rechargeable batteries. We prepared the cathode materials using a novel eutectic self-mixing method without any artificial mixing procedures. This method provides an extraordinarily simple way to make the cathode materials, and it is possible to prepare at very low temperature such as 25$0^{\circ}C$. Furthermore, the cathode materials produced have discharge capacities that are much better than cathode materials prepared by previously reported synthetic methods. The spontaneous and homogeneous mixing is verified by $^{7}$ Li magic-angle-spinning (MAS) NMR spectroscopy.

  • PDF

Nurmerical Study on the Discharge Characteristics of Cylindrical Microcavity Structure (수치해석을 통한 초미세 방전 소자의 방전 특성 연구)

  • Seo, Jeong-Hyun;Kang, Kyoung-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.641-647
    • /
    • 2008
  • In this paper, we have studied the basic discharge characteristics of ac-type cylindrical microcavity structure. The structure has a two electrodes, which are positioned in the bottom of the cavity and in the side wall of the cylinder, respectively. The discharge showed asymmetric phenomena depending on the position of a cathode electrode. When the bottom electrode was a cathode, the discharge was stronger even though the area of the cathode was smaller than that of the anode. Simulation results revealed that the focused electric field toward the bottom electrode increased ion density in the space which in turn strengthened the cathode sheath and ionization process.