• 제목/요약/키워드: Cathode requirements

검색결과 23건 처리시간 0.03초

600 W급 연료전지(PEMFC)의 설계 및 제작 (Design and Development of 600 W Proton Exchange Membrane Fuel Cell)

  • 김주곤;정현열;;소비 토마스;손병락;;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

Electrolytes - Quality at Point of Use

  • Heider U.;Jungnitz M.;Oesten R.
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 1998년도 전지기술 심포지움
    • /
    • pp.153-166
    • /
    • 1998
  • Lithium ion Batteries commercially available since the early nineties in Japan are going to be more and more important for portable electronic devices and even EV applications. Today several companies around the world are working hard to join to market for Lithium secondary batteries. Based on the growing interest for commercial use of batteries also the materials have to be reviewed in order to meet large scale production needs. The requirements especially for electrolytes for lithium batteries are extremely high. The solvents and the lithium salts should be of highest purity. So the supply of these chemicals including packaging, transportation and storage but also the handling in production are critical items in this field. Frolic impurities are very critical for LiPF6 based electrolytes. The influence of water is tremendous. But also the other protic impurities like alcoholes are playing an Important role for the electrolyte quality. The reaction of these species with LiPF6 leads to formation of HF which further reacts with cathode materials (spinel) and anode. To understand the role of the protic impurities more clearly the electrolyte was doped with such compounds and was analyzed for protic impurities and HF. These results which directly show the relation between impurities and quality will be presented and discussed. In addition several investigations on different packaging materials as well as methods to analyze and handle the sensititive material will be addressed. These questions which are only partly discussed in literature so far and never been investigated systematically cover some of the key parameters for understanding of the battery chemicals. This investigation and understanding however is of major importance for scientist and engineers in the field of Lithium ion and Lithium polymer batteries.

  • PDF

Znq2와 dye에 의한 적색 유기 전계 발광 소자의 발광특성 (Emission Properties of Red OELD with $Znq_2$ and dye)

  • 조민정;최완지;박철현;임기조;박수길;김현후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1466-1468
    • /
    • 2001
  • For the full color organic electro-luminescent device, essentially, red, green, and blue emissions are required. But red emission is not to reach minimum level of practical use 31[lm/W]. In order to optimize color purity and power consumption requirements, it is important for the materials development efforts to search for improvements in red emission effisiency. In this study, the bis(8-oxyquinolino)zinc II ($Znq_2$) were synthesized successfully from zinc chloride($ZnCl_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye(DCJTB)-doped and inserted $Znq_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4.4'-diamine(TPD), and the host material of emission layer is $Znq_2$. For the inserting of $Znq_2$, efficiency increased.

  • PDF

Pulse Density Modulated ZVS High Frequency Inverter with Reverse Blocking Single Switch for Dielectric Barrier Discharge Lamp Dimming

  • Sugimura Hisayuki;Yasui Kenji;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.206-209
    • /
    • 2006
  • At present, the cold cathode fluorescent lamp (CCFL) using mercury lamp has been generally used far liquid crystal backlight source of personal computer and car navigation and so on. This kind of lamp is more excellent on luminance performance and cost. However, the requirements of liquid crystal backlight due to a light source without mercury have been strongly increased from a viewpoint of the actual influence on environmental preservation and environmental recycling. As fluorescent lamp without mercury, Dielectric Barrier Discharge based rare gas fluorescent lamp (DBD-FL) using xenon (Xe) gas has been studied so far. This DBD lamp has no influence on the human body and environmental recycle. Its operating life is long because electrode is out. In this paper, the simulation and experimental results of soft switching high frequency inverter with reverse blocking single switch as a high frequency power supply circuit for DBD-FL using Xe gas are comparatively evaluated and discussed from a practical point of view.

  • PDF

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

수계전해질기반 차세대 금속이온전지 기술 (Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes)

  • 신동옥;최재철;강석훈;박영삼;이영기
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.83-94
    • /
    • 2024
  • There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.

탄소섬유를 활용한 구조용 배터리 연구 동향 (A Review of Structural Batteries with Carbon Fibers)

  • 권동준;남상용
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.361-370
    • /
    • 2021
  • 탄소 섬유 강화플라스틱은 가볍지만 우수한 기계적 강도를 가지는 복합재의 한 종류이다. 가벼우면서 우수한 기계적 강도를 가지는 탄소 섬유 강화플라스틱은 산업 전반에 널리 이용되고 있으며, 최근 활발히 연구되고 있는 전기자동차 및 무인기 등의 무게 감소 핵심 대체 부품으로 연구되고 있다. 배터리를 전원으로 사용하는 운송수단 등은 외부 충격에 이차 폭발의 위험이 있기 때문에 배터리를 안전하게 보호할 수 있는 덮개가 필수적인 동시에, 무게를 줄여 주행거리를 늘려야 하는 요구조건을 만족해야 한다. 이러한 요구 조건에 부합하는 재료로 탄소섬유 강화플라스틱이 손꼽히고 있고, 배터리 보호 덮개 및 다양한 대체품으로의 활용이 연구되고 있다. 한편, 우수한 전기적 특성을 가진 탄소 섬유를 배터리 구성품으로 활용하는 연구가 배터리 분야에서 진행 중이고, 이에 더 나아가 탄소 섬유가 배터리를 보호하고 배터리 전극 및 집전체 역할까지 동시에 수행하는 구조용 배터리에 대한 연구가 스웨덴과 미국을 중심으로 활발히 연구 중이다. 본 총설에서는 탄소 섬유의 역할에 따른 구조용 배터리의 분류 및 해당 배터리들에서 발생하는 문제점 등을 포괄하는 최근 연구 동향을 요약하고, 구조용 배터리에 대한 전망을 간략히 논의하고자 한다.

그린홈 보급확대를 위한 건물용 연료전지 보조기기 국산화 기술개발 (Technology development on localization of BOP components for 1kW stationary fuel cell systems to promote green-home dissemination project)

  • 김민석;이선호;전희권;배준강
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.128.2-128.2
    • /
    • 2010
  • For stationary 1kW-class fuel cell systems to be used widely, it is essential to achieve dramatic improvements in system durability as well as cost reduction. In order to address this engineering challenge, it is important to develop innovative technologies associated with BOP components. According to this background, in 2009, the Korean Government and "Korea Institute of Energy Technology Evaluation and Planning(KETEP)" launched into the strategic development project of BOP technology for practical applications and commercializations of stationary fuel cell systems, named "Technology Development on Cost Reduction of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project". The objectives of this project are to develop fundamental technologies to meet these requirements, and to improve the performance and functionality of BOP components with reasonable price. The project consortium consists of Korea's leading fuel cell system manufacturers, BOP component manufacturers which technologically specialized, and several research institutions. This paper is to provide a summary of the project, as well as the achievements made through the 1st period of the project(2009~2010). Several prototypes of BOPs - Cathode air blowers, burner air blowers, preferential oxidation air blowers, fuel blowers, cooling water pumps, reformer water pumps, heat recovery pumps, mass flow meters, valves and power conditioning systems - had been developed through this project in 2010. As results of this project, it is expected that a technological breakthrough of these BOP components will result in a substantial system cost reduction.

  • PDF

연료전지 모델링 및 공기이용률 제어에 관한 연구 (Fuel Cell Modeling and Load Controlling by the Variable Utilization of Airflow)

  • 송석흥;이원용;김창수;박영필
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.48-52
    • /
    • 2003
  • 일반적으로 연료전지 제어의 주목표는 연료와 공기의 반응이 원활하게 이루어져 출력을 연속적이고 안정되게 얻어지도록 공정설비를 제어함에 있다 연료전지의 과부하에 따른 성능저하 및 급격한 유량증가에 따른 양극간의 압력차로 인한 전극손상이 발생하지 않도록 하기 위해, 연료전지의 제어조건을 고려한 동적모델링이 필요하다. 전극간 압력차이를 허용범위 이하로 유지하며 급격한 부하요구가 발생하더라도 부하에 적합한 이용율 이상으로 부하가 걸리지 않도록 공기이용률 제어를 이용하였다. 10kW고분자 연료전지(PEMFC)의 전산모사를 통해 모델의 타당성을 검토하였고 제어성능을 수행하여 1초 내의 부하추종성능을 얻을 수 있었으며, 0.01atm내의 양극간 압력차를 유지시킬 수 있었다.

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF