• 제목/요약/키워드: Cathode corona

검색결과 7건 처리시간 0.018초

플라즈마 반응기구조에 따른 코로나방전 및 NO-NO$_2$ 전환특성에 관한 실험적 연구 (Experimental Study on the Effect of Plasma Reactor Type on Corona Discharge and NO-NO2 Conversion Characteristics)

  • 박용성;전광민
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.65-71
    • /
    • 2002
  • Characteristics of corona discharge of the different types of the plasma reactors which are cone-hole and cone-plate is investigated experimentally. The discharge starts at lower voltage for the cathode corona than the anode corona and spark occurs at higher voltage for the cathode corona. And the cathode corona makes more stable discharge than the anode corona. The effect of the base gas in corona discharge for different O$_2$/N$_2$ concentrations is related with the gas molecular weight. The discharge for the smaller molecular weight gas occurs easier than for the high molecular weight gas. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. NO-NO$_2$ conversion increases with the energy density of corona discharge and the addition of O$_2$ in a base N$_2$ gas.

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

초음속 유동에서 코로나 방전을 이용한 금속 나노 입자의 생성 (Metallic Nano Particle Generation by Supersonic Nozzle with Corona Discharge)

  • 정재희;박형호;김상수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1510-1515
    • /
    • 2004
  • The effects of additive ions on the generation of metallic nanoparticles were evaluated using a corona induced supersonic nozzle. Applying the corona discharge to the nanoparticle generator, a tungsten needle and the supersonic nozzle are used as an anode electrode and a cathode electrode respectively. The corona ions act as nuclei for the silver vapor condensation. The ion density was controlled precisely as varying the applied voltage between electrode and nozzle. The mean diameter of the silver particle decreases as the ion density increases. However, the number concentration of the silver particle tended to increase with the ion density. The size distribution is more uniform as the ion density increases.

  • PDF

코로나방전에 의한 $NO_2$ 전환특성 및 soot 산화에 관한 연구 (An experimental study on $NO-NO_2$ conversion characteristics and oxidation of soot by corona discharge)

  • 박용성;전광민;박광서;이종현;조성우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.179-184
    • /
    • 2001
  • The characteristics of $NO-NO_2$ conversion and soot oxidation by corona discharge are investigated experimentally. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. $NO-NO_2$ conversion increases with the energy density of corona discharge and the addition of $O_2$ in a base $N_2$ gas. Soot oxidation occurs at approximately $480^{\circ}C$ in a mixture of 21% $O_2$, base $N_2$ gas, and enhances as temperature increases. The initiation temperature of soot oxidation advances greatly to about $280^{\circ}C$ with the addition of 300ppm $NO_2$, which is generated from the conversion of NO to $NO_2$ by corona discharge. CO is generated at higher temperature by about $50{\sim}100^{\circ}C$ than $CO_2$ in the process of soot oxidation.

  • PDF

Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations

  • Zhang, Yu;Liu, Li-Juan;Miao, Jin-Song;Peng, Zu-Lin;Ouyang, Ji-Ting
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1174-1180
    • /
    • 2015
  • We investigate in this paper the radiated electromagnetic waves together with the discharge characteristics of Trichel pulse of negative DC corona discharge in air in pin-to-plate and wire-to-plate configurations. The feature of the current pulse and the frequency spectrum of the electromagnetic radiations were measured under various pressures and gas gaps. The results show that the repetition frequency and the amplitude of Trichel pulse current depend on the discharge conditions, but the rising time of the pulse relates only to the radius of needle or wire and keeps constant even if the other conditions (including the discharge current, the gas gap and the gas pressure) change. There exists the characterized spectrum of electromagnetic waves from negative corona discharge in Trichel pulse regime. These characterized radiations do not change their frequency at a given cathode geometry even if the averaged current, the gas gap or the air pressure changes, but the amplitude of radiations changes accordingly. The characterized electromagnetic radiations from Trichel pulse corona relate to the formation or the rising edge of current pulse. It confirms that the characterized radiations from Trichel pulse supply information of discharge system and provide a potential method for detecting charged targets.

몬테카를로법을 이용한 대기압 코로나방전에 의한 $N_2$의 여기.전리 분포 해석 (A Monte Carlo Simulation of excitation.ionization profiles of Nitrogen Gas in 1 atm. Corona discharge)

  • 김경호;고광철;강형부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1385-1387
    • /
    • 1995
  • The Monte Carlo method for studying the steady-state behavior of electrons under the influence of a electric field is described. In this simulation used a Free Flight Time technique based on determination of the increase in kinetic energy between two collisions. The electron behavior in the cathode region of a corona discharge has been analysed using this method; spatial variations of the energy and excitation, ionization, and the multiplication of electrons were discussed.

  • PDF

수치해석을 통한 SEM 챔버내의 이차전자 거동해석 및 이차전자 검출기의 최적 장착 위치 선정 (The Behavior of Secondary Electrons and Optimal Mounting Position of a Secondary Electron Detector in SEM with a Numerical Analysis)

  • 부경석;전종업
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.15-21
    • /
    • 2008
  • Secondary electron detectors used in scanning electron microscope accept secondary electrons emitted from the specimen and convert them to an electrical signal that, after amplification, is used to modulate the gray-level intensities on a cathode ray tube, producing an image of the specimen. In order to acquire images with good qualities, as many secondary electrons as possible should be reached to the detector. To realize this it is very important to select an appropriate mounting position and angle of the detector inside the chamber of scanning electron microscope. In this paper, a number of numerical simulations are performed to explore the relationships between detection rates of secondary electrons and the values of some parameters, such as distances between the detector and sample, relative mounting positions of scintillator positioned inside the detector with respect to detector cover, two types of mounting angles of the detector. The relationships between detection rates and applied voltages to corona ring and faraday cage, and energies of secondary electrons are investigated as well.