• 제목/요약/키워드: Cathepsin K

검색결과 169건 처리시간 0.028초

진교의 파골세포 분화 및 골 흡수 유전자 억제기전 연구 (Gentianae Macrophyllae Radix Water Extract Inhibits RANKL-Induced Osteoclastogenesis and Osteoclast Specific Genes)

  • 양규진;김재현;김민선;류광현;문진호;이혜인;정혁상;손영주
    • Korean Journal of Acupuncture
    • /
    • 제37권2호
    • /
    • pp.63-75
    • /
    • 2020
  • Objectives : Osteoporosis is the most common bone disease and osteoporosis fracture is the leading cause of decreased life. Bisphosphonate and selective estrogen receptor modulators are the best choice of treatment for osteoporosis. However, when used for a long time, they increase the probability of side effect such as osteonecrosis of the jaw. Thus, it is crucial to develop alternative medicine to treat osteoporosis. Gentianae Macrophyllae Radix, a herbal medicine, is mainly to treat rheumatoid arthritis. However, the effect of the water extract of Gentianae Macrophyllae Radix (w-GM) on osteoporosis has not been investigated. Thus, we examine whether w-GM can inhibit osteoclast differentiation and bone resorption on receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-treated RAW 264.7 cells. In this study, RAW 264.7 cells were used as an osteoclast differentiation model by treating them with RANKL. Methods : RAW 264.7 cells were used to determine the effect of w-GM on osteoclast differentiation and bone resorption. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity and pit formation assay were examined. In addition, protein expressions were measured by western blot and mRNA expressions were analyzed by reverse transcription polymerase chain reaction. Results : Treatment with w-GM inhibited the number of TRAP-positive cells, TRAP activity and pit area. In addition, w-GM decreased protein expression such as mitogen-activated protein kinase, NF-κB, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). It also inhibited the mRNA levels such as c-Fos, NFATc1, TRAP, NF-κB, calcitonin receptor and cathepsin K in RANKL-treated RAW 264.7 cells. Conclusions : These results suggest that w-GM has inhibitory effects via osteoclast differentiation, thus it could be a new medication for osteoporosis.

상기생 추출물이 파골세포 분화와 골흡수 억제에 미치는 효과 (Inhibition Effect of Taxilli Ramulus Extract on Osteoclast Differentiation and Bone Resorption)

  • 백종민;김주영;이명수;정우진;문서영;전병훈;오재민;최민규
    • 동의생리병리학회지
    • /
    • 제27권4호
    • /
    • pp.431-436
    • /
    • 2013
  • Bone homeostasis is maintained by co-ordination of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between osteoclasts and osteoblasts leads to many bone diseases such as osteoporosis, rheumatoid arthritis. Taxillus chinensis is a herb that has been widely used to improve bone health. However, the effect and mechanism of Taxillus chinensis extract on osteoclast differentiation and bone resportion has been unknown. Thus, We investigated the effect of Taxillus chinensis on expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation and bone resorption. Also, the action of Taxillus chinensis on mechanisms relating to osteoclast differentiation was studied. In this results, we identified that Taxillus chinensis significantly inhibited RANKL-induced osteoclast differentiation and bone resportion. Moreover, Taxillus chinensis was suppressed the activation of NF-${\kappa}B$ in bone marrow macrophage treated RANKL and M-CSF. Taxillus chinensis was down-regulated the mRNA expression of c-Fos, nuclear factor of activated T-cells (NFAT)c1, osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP). The cell adhesion-related molecules such as integrin ${\alpha}v$ and integrin ${\beta}3$, and the filamentous actin (F-actin) rings of mature osteoclasts-related molecules such as dendritic cell-specific transmembrane preotein (DC-STAMP) and cathepsin K are also suppressed. Taken together, these results indicated that Taxillus chinensis will be a good candidate to treat osteoclast-mediated bone diseases.

백하수오(白何首烏) 물 추출물의 파골세포 분화에 미치는 영향 (Effect of Water Extract of Cynanchi Wilfordii Radix in RANKL-induced Osteoclast Differentiation)

  • 안용환;오재민;이명수;정종혁;채수욱;문서영;전병훈;최민규
    • 동의생리병리학회지
    • /
    • 제26권2호
    • /
    • pp.160-165
    • /
    • 2012
  • Osteoporotic fracture became a serious social problem, which related with mortality and morbidity in old age population. Osteoclast which is responsible for bone resorption is originated from hematopoietic cell line and plays a key role osteoporotic bone loss. Cynanchum wilfordii (Asclepiadaceae) roots have been used in Korean folk medicine for the treatment of diabetes mellitus and aging progression. Also, recent studies have shown that the extract and fractions of Cynanchi Wilfordii Radix have various pharmacological actions including scavenging free radicals, enhancing immunity, reducing high serum cholesterol, and anti-tumor activity. However, the effect of extract of Cynanchi Wilfordii Radix in osteoclast differentiation had not been reported. Thus, we evaluated the effect of Cynanchi Wilfordii Radix on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Through our study, we found that Cynanchi Wilfordii Radix significantly inhibited osteoclast differentiation induced by RANKL. Cynanchi Wilfordii Radix suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Cynanchi Wilfordii Radix significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Cynanchi Wilfordii Radix inhibited the protein expression of c-fos and NFATc1. Taken together, our results demonstrated that Cynanchi Wilfordii Radix may be useful treatment option of bone-related disease such as osteoporosis leads to fracture of bone and rheumatoid arthritis.

Dlx3 Plays a Role as a Positive Regulator of Osteoclast Differentiation

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제32권3호
    • /
    • pp.85-91
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to playa role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM # 190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. Although the observed defects of TDO syndrome involves bone, little is known about the role of Dlx3 in bone remodeling process. In this study, we examined the effect of wild type DLX3 (wtDlx3) expression on osteoclast differentiation and compared it with that of 4-BP DEL DLX3 (TDO mtDlx3). To examine whether Dlx3 is expressed during RANKL-induced osteoclast differentiation, RAW264.7 cells were cultured in the presence of receptor activator of nuclear factor-B ligand (RANKL). Dlx3 protein level increased slightly after RANKL treatment for 1 day and peaked when the fusion of prefusion osteoclasts actively progressed. When wtDlx3 and TDO mtDlx3 were overexpressed in RAW264.7 cells, they enhanced RANKL-induced osteoclastogenesis and the expression of osteoclast differentiation marker genes such as calcitonin receptor, vitronectin receptor and cathepsin K. Since osteoclast differentiation is critically regulated by the balance between RANKL and osteoprotegerin (OPG), we examined the effect of Dlx3 overexpression on expression of RANKL and OPG in C2C12 cells in the presence of bone morphogenetic protein 2. Overexpression of wtDlx3 enhanced RANKL mRNA expression while slightly suppressed OPG expression. However, TDO mtDlx3 did not exert significant effects. This result suggests that inability of TDO mtDlx3 to regulate expression of RANKL and OPG may contribute to increased bone density in TDO syndrome patients. Taken together, it is suggested that Dlx3 playa role as a positive regulator of osteoclast differentiation via up-regulation of osteoclast differentiation-associated genes in osteoclasts, as well as via increasing the ratio of RANKL to OPG in osteoblastic cells.

파골세포 분화에 미치는 노회(蘆會) 추출물의 효과 (Effect of Water Extract of Aloe in RANKL-induced Osteoclast Differentiation)

  • 이정휴;이명수;채수욱;김하영;문서영;전병훈;조해중
    • 동의생리병리학회지
    • /
    • 제25권6호
    • /
    • pp.1008-1013
    • /
    • 2011
  • Osteoporosis is the leading underlying cause of fractures, particularly in postmenopausal women, due to the loss of estrogen-mediated suppression of bone resorption. More than 50% of adults 50 years of age or older are estimated to have osteoporosis. Osteoclast which is main target for treatment of osteoporosis is originated from hematopoietic cell line. Aloe has been widely used in worldwide country as a coadjuvant medicine. Extracts of the leaves of Aloe have been used in condition to improve dermatologic problem such as seborrheic dermatitis, aphthous stomatitis, xerosis, lichen planus and has been known to exert anti-inflammatory, anti-oxidant and anti-tumor effects. However, despite the popularity of aloe as a plant food supplements, the evaluation of its efficacy as a possible therapeutic option for osteoporosis remains scarce. Thus, we evaluated the effect of Aloe on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Here we found that Aloe significantly inhibited osteoclast differentiation induced by RANKL. Aloe suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Aloe significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Aloe greatly inhibited the protein expression of c-fos and NFATc1. Taken together, our results suggested that Aloe may be useful tool for treatment of osteoporosis by inhibition of osteoclast differentiation.

치주인대섬유아세포가 파골세포분화에 미치는 영향 (Human Periodontal Ligament Fibroblasts Support the Osteoclastogenesis of RAW264.7 Cells)

  • 이호;전용선;최승환;김형섭;오귀옥
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.733-744
    • /
    • 2002
  • The fibroblasts are the principal cells in the periodontal ligament of peridontium. As the periodontal ligament fibroblasts (PDLF) show similar phenotype with osteoblasts, the PDLF are thought to play an important role in alveolar bone remodeling. Cell-to-cell contacted signaling is crucial for osteoclast formation. Recently it has been reported that PDLJ enhance the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The aims of this study were to $clarify\;^{1)}$ the mechanism of PDLF-induced osteoclastogenesis $and\;^{2)}$ whether we can use preosteoclast cell line instead of primary hematopoietic preosteoclast cells for studying the mechanism of PDLF-induced osteoclastogenesis. Osteoclastic differentiation of mouse macrophage cell line RAW264.7 was compared with that of mouse bone marrow-derived M-CSF dependent cell (MDBM), a well-known hematopoietic preosteoclast model, by examining, 1) osteoclast-specific gene expression such as calcitonin receptor, M-CSF receptor (c-fms), cathepsin K, receptoractivator nuclear factor kappa B (RANK) ,2) generation of TRAP(+) multinucleated cells (MNCs), and 3) generation of resorption pit on the $OAAS^{TM}$ plate. RAW264.7 cultured in the medium containing of soluble osteoclast differentiation Factor (sODF) showed similar phenotype with MDBM-derived osteoclasts, those are mRNA expression pattern of osteoclast-specific genes, TRAP(+) MNCs generation, and bone resorbing abivity. Formation of resorption pits by osteoclastic MNCs differentiated from sODF-treated RAW264.7, was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for ODF, to the sODF-containing culture me야um. The effects of PDLF on differentiation of RAW264.7 into the TRAP(+) multinucleated osteoclast-like cells were examined using coculture system. PDLF were fxed with paraformaldehyde, followed by coculture with RAW264.7, which induced formation of TRAP(+) MNCs in the absence of additional treatment of sODF. When compared with untreated and fixed PDLF (fPDLF), IL-1 ${\beta}$-treated, or lipopolysaccha-ride-treated and then fixed PDLF showed two-folld increase in the supporting activity of osteoclastogenesis from RAW264.7 coculture system. There were no TRAP(+) MNCs formation in coculture system of RAW264.7 with PDLF of no fixation. These findigs suggested that we can replace the primary hematopoietic preosteoclasts for RAW264. 7 cell line for studying the mechanism of PDLF-induced osteoclastogenesis, and we hypothesize that PDLF control osteoclastogenesis through ODF expression which might be enhanced by inflammatory signals.

페흡충 충란에 존재하는 시스테인 계열 단백질 분해효소 (A cysteine protease of Paragonimus westermani eggs)

  • 강신영;조명신
    • Parasites, Hosts and Diseases
    • /
    • 제33권4호
    • /
    • pp.323-330
    • /
    • 1995
  • 폐흡충의 여러 발육 단계 즉 피낭유충 종숙주 내 성숙단계 충체 및 성충에서 분자량이 각각 28, 27, 22 및 17.5 kDa인 시스테인 계열 단백질 분해효소가 분리 정제되었다. 이 연구는 만성 폐흡충증의 육아종에서 발견되는 충란이 육아종 형성에 관여하는 물질을 분비한다면 그 분비액 중에서는 단백질 분해효소가 중요할 것이라고 가정하고 우선 그 존재를 조사하였으며 이를 부분정제하고 생화학적 특성을 관찰하였다. 실험적으로 개에 폐흡충 피낭유충을 감염시키고, 14주일 후에 개를 포살하여 폐를 분리하였다. 폐를 생리식염수로 씻어 그 세척액에서 충란을 모았다. 그후 해부 현미경하에서 이물질(이물질)을 제거하고 증류수에서 하룻밤 투석하여 충란외부에 묻어 있을 수 있는 숙주 또는 성충의 조직을 제거하였다. 충란을 생리식염수에서 마쇄한 후 원심분리에 의해 충란 조효소(조효소)를 제작하였다. 조효소에는 Cbz-phe-arg-MNA와 Azocoll을 분해하는 단백질 분해효소가 존재하였으며 이 활성은 pH 6에서 가장 높았다. 이 활성은 DTT에 의해 6.5배 증강되었고, 시스테인계 단백실 분해효소의 특이 억제제인 I-64나 IAA에 의해서는 90% 억제되었다. 조효소를 Sephacryl 5-300 HR column을 통과시켜 효소를 부분정제한 결과 분자량이 35 kDa인 시스테인 계열의 단백질 분해효소을 정제할 수 있었다.

  • PDF

치수 및 치근단 질환에서의 단백분해효소 및 단백분해효소 억제제의 활성도에 관한 연구 (A STUDY ON THE ACTIVITY OF PROTEINASE AND PROTEINASE INHIBITOR IN PULPAL AND PERIAPICAL PATHOSES)

  • 김진우;;임성삼
    • Restorative Dentistry and Endodontics
    • /
    • 제25권4호
    • /
    • pp.509-526
    • /
    • 2000
  • It is known that injuries to the dentin have a corresponding inflammatory effect on the pulp and these inflammatory effects frequently result in pulpal pathoses due to progressive degradation of pulpal connective tissue. It was supposed that the tissue degradation in different inflammatory process was controlled by proteinase activity and antiproteinase activity. Therefore, the purpose of this study was to examine the pulp and periapical pathoses in terms of the activities of proteinase and proteinase inhibitor, 37 pulpal tissues were divided by clinical diagnostic criteria into normal pulp, acute inflamed pulp, and chronic inflamed pulp, and then those groups were subdivided by histopathological findings into 5 pulpal pathoses groups, i.e. normal pulp (P1, n=8), chronic pulpitis with fibrotic change (P2, n=2), chronic pulpitis with dystrophic calcification (P3, n=11), chronic pulpitis with pulp abscess (P4, n=7), acute pulpitis with necrotic change (P5, n=4), 26 periapical tissues were also divided by ordinary histopathological findings into 3 periapical pathoses group, i.e., granuloma (A1, n=17), cyst (A2, n=2) and abscess (A3, n=7). The activities of proteinases (cathepsin G, MMP-3) and proteinase inhibitors (${\alpha}1$-AT, TIMP-1 and, SLPI) were evaluated by RT-PCR and immunohistochemical methods. The results were as follows. 1. Generally, the intensity of immunohistochemical staining of proteinases and proteinase inhibitors increased in P2 and P5 groups compared to P1 group. 2. The immunohistochemical stain of proteinases and proteinase inhibitors was intensely detected in P2 group, showing low inflammatory reaction and low tissue degradation, but it was reduced in P3 and P4 groups, showing severe tissue degradation. 3. The distribution of proteinases and proteinase inhibitors in pulpal pathoses was consistently presented by immunohistochemical staining, while the expression of proteinase and/or proteinase inhibitors mRNAs in pulpal pathoses was occasionally detected by RT-PCR methods. 4. RT-PCR of proteinase and proteinase inhibitors was usually positive in P2, showing rare tissue degradation, but it was almost negative in P3 and P4, showing severe tissue degradation. 5. We presume that the reason why the level of proteinase and proteinase inhibitors was so sparse in RT-PCR method is due to the abrupt decrease of mRNA synthesis or degradation of synthesized mRNA of proteinase and/or proteinase inhibitors depend on the inflammatory reaction and/or on the degradation of pulp tissues(P3, P4). 6. Pulpal pathoses groups showed significant lower RT-PCR detection of proteinases and proteinase inhibitors than the periapical pathoses group(p<0.05), and there is no significant difference among the periapical pathoses groups(p>0.05).

  • PDF

토끼에서 cisplatin에 의해 유도된 급성 신부전시 산조인 추출물의 효과 (Effects of Zizyphi Spinosae Extract on Cisplatin and t-Butylhydroperoxide Induced Acute Renal Failure in Rabbits)

  • 김재영;김충희
    • 생명과학회지
    • /
    • 제24권7호
    • /
    • pp.777-783
    • /
    • 2014
  • 항암제로 알려진 cisplatin과 t-BHP를 토끼에 투여하여 유도된 급성 신부전 시 산조인 추출액을 처리하였을 때 신장 세포의 보호에 미치는 항산화 효과를 조사하였다. 신장을 분리한 후 신피질 절편 실험에서 세포의 손상을 유발하는 지질과산화 및 LDH 실험에서 t-BHP 단독 처리 시 대조군에 비하여 각각 3배, 5배 이상 증가하였으나 산조인 추출액 0.5%를 동시 처리하였을 때는 대조군 수준으로 감소하였다. Creatinine 측정과 지질과산화 실험에서 cisplatin $5mg{\cdot}kg^{-1}$을 복강 투여한 군의 creatinine 농도가 $2.13{\pm}0.1mg{\cdot}dl^{-1}$로 나타났으나 산조인 추출액 $50mg{\cdot}kg^{-1}{\cdot}day^{-1}$을 7일간 전처리 후 cisplatin 투여 48시간 경과한 군은 $0.84{\pm}0.1mg{\cdot}dl^{-1}$로 creatinine의 농도가 약 60% 감소되는 신장보호 효과를 나타내었고, 지질과산화 검사는 cisplatin 단독 투여 시 대조군에 비하여 1.6배 높게 나타났으나 산조인 추출액 전처리 시 1.1배로 대조군과 유사하였다. 병리조직 검사는 cisplatin 단독 처리군에서 근위곱슬세관이 대조군에 대하여 더 붉게 염색되었으며 근위곱슬세관은 내강의 융모세포가 탈락하여 공포를 형성하였다. 그러나 산조인 추출액을 7일간 전처리한 군에서는 근위곱슬세관이 대조군과 유사한 염색소견을 보였고 근위곱습세관도 내강의 융모세포 탈락이 거의 나타나지 않았다. 따라서 cisplatin과 t-BHP에 의해 유발된 신장세포 손상에 대하여 산조인 추출액이 항산화 효과를 보였다.