• Title/Summary/Keyword: Catfish retina

Search Result 7, Processing Time 0.036 seconds

Chemical Coupling between Horizontal Cells in the Catfish Retina

  • Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of GABA and glutamate on the horizontal cells were explored by an intracellular recording method to discern the mechanisms of receptive field formation by chemical coupling in the catfish outer retina. The results suggest that the horizontal cells of the catfish retina might use GABA as their transmitters and that the GABAergic system contributes to the formation of receptive fields of the horizontal cells. GABAC receptors may be involved in a chemical coupling between horizontal cells and concerned with the depolarizing actions by GABA on horizontal cells in the catfish retina. Since the chloride equilibrium potential is more positive than the dark membrane potential in horizontal cells, GABA released from a horizontal cell may depolarize the neighboring horizontal cells. Thus a chemical coupling between horizontal cells may be formed. $GABA_A$ receptors also may be involved in the negative feedback mechanism between photoreceptor and horizontal cell. And glutamate may be involved in connecting positive and negative feedback systems since it potentiated the GABA's actions. Therefore, it is presumed that large receptive fields in the catfish retina are formed not only by electrical coupling but also by chemical coupling between horizontal cells. And information travels laterally by pathways involving both electrical coupling composed of gap junctions and chemical coupling in the retinal network.

  • PDF

Electrophysiological Analysis of GABA and Glycine Action on Neurons of the Catfish Retina

  • Bai, Sun-Ho;Jung, Chang-Sub;Lee, Sung-Jong
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.163-174
    • /
    • 1993
  • Vertebrate retinal neurons, like brain tracts farm complex synaptic relations in the enter and inner plexiform layers which ape equivalent to the central nervous system nuclei. The effects of $\gamma-aminobutyric$ acid(GABA) and glycine on retinal neurons were explored to discern the mechanisms of action of neurotransmitters. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus, using intracellular electrophysiological techniques. The roles of GABA and glycine as inhibitory neurotransmitters are well established in the vertebrate retina. But, we found that the depolarizing action of GABA and glycine on third-order neurons in the catfish retina. GABA and glycine appeared to act on retinal ueurons based on the observations that (1) effects on photoreceptors were not observed, (2) horizontal cells were either hyperpolarized $({\sim}33%)$ or depolarized $({\sim}67%)$, (3) bipolar cells were all hyperpolarized (4) amacrine and ganglion cells were either hyperpolarized $({\sim}37%)$ or depolarized $({\sim}63%)$, (5) GABA and glycine may be working to suppress presynaptic inhibition. The results suggest that depolarization of third-order neurons by GABA and glycine is due to at least two mechanisms; a direct postsynaptic effect and an indirect effect. Therefore, in the catfish retina, a mechanism of presynaptic inhibition or disinhibition including the direct postsynaptic effect may exist in the third-order neurons.

  • PDF

Dynamic properties of the retinal neurons by using of the intracellular recording method (세포내 기록법으로써 검출한 망막 신경원의 동적 특성)

  • 이성종;정창섭;배선호
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 1998
  • The dynamic properties of the 3rd-order neuron of the retina was investigated by using conventional intracellular recording techniques. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus. The cornea, iris, lens, and vitreous were removed by absorption with Kimwipe tissue under the dissection microscope thereby exposing the retina in a hemi -eyecup. The electrical signal was amplified by electrometer, viewed on oscilloscope. Regular signals from the cells were recorded on a penwriter and stored by data recorder and computer. Full-field, spot or annular light stimuli were generated on a computer monitor and focused onto the retina. Baclofen hyperpolarized the dark membrane potential, suppressed sustained component and enhanced transient component of the ON-sustained cell with a large transient component, but did not affect the surround antagonism of the cell. Baclofen selectively suppressed responses evoked by moving bar light stimuli on the ON-OFF transient cell. The results suggest that transient cells have directional selectivity in the inner retina. These dynamic properties of amacrine and ganglion cells were modulated by baclofen. Therefore, it is presumed that there is baclofen-induced directional selectivity in ON-OFF transient cells in the catfish retina.

  • PDF

The $GABA_c$ Receptor Is Present in Isolated Cone-Horizontal Cell Axon Terminals From Catfish Retina

  • Jung, Chang-Sub;Lee, Sung-Jong;Paik, Sun-Sook;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.35-35
    • /
    • 1998
  • Catfish retina contains cone- and rod-horizontal cells. Only the cone-horizontal cell (cone-HC) has an axon and axon terminal. We compared the distribution of excitatory and inhibitory receptors in axon terminals and somata to begin to learn about the distinct functions of these two structures.(omitted)

  • PDF

Protein Kinase Modulates the $GABA_c$ Currents in Cone-horizontal Cell Axon-terminals Isolated from Catfish Retina

  • Paik, Sun-Sook;Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.54-54
    • /
    • 1999
  • Protein kinase modulation of gamma-aminobutyric acid C (GABA$_{c}$) currents in freshly dissociated catfish retinal cone-horizontal cell axon-terminals was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA were monitored in intracellular application of adenosin 3',5'-cycle monophophate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, and their inhibitors or inactive analogues.(omitted)d)

  • PDF

Histological Study of Oculocutaneous Albinism in Korean Far Eastern Catfish Silurus asotus (백색증 메기 Silurus asotus에 관한 조직학적 연구)

  • Park, Jong-Young;Oh, Min-Ki;Yoon, Seung-Woon;Lee, Wan-Ok
    • Korean Journal of Ichthyology
    • /
    • v.21 no.2
    • /
    • pp.100-105
    • /
    • 2009
  • Histological study of normal and albinic catfish Silurus asotus produced in aquaculture has been carried out on organs such as the eye, the barbel, the dorsal fin, and the skin (including dorsal, ventral and lateral regions). Although individuals have no differences in morphological appearance, their colors showed clear difference as follows: the normal catfishes were black overall, but the albinic ones have a yellowish-white color over the whole body, red eyes and white barbels. All the organs investigated were fundamentally very similar in structure. Regarding the distribution and density of the melanin pigments, however, the albinic catfish have no melanin in the skin and eye, particularly in the basement membrane of the epidermis and the pigment epithelial layer in the retina, while the normal catfish have lots of melanin. This phenomenon may coincide with the so-called $i^1/i^1$ type of oculocutaneous albinism.

Comparative Analysis of Tissue and Cell Cycle on the Far Eastern Catfish, Silurus asotus between Diploid and Triploid

  • Gil, Hyun Woo;Lee, Tae Ho;Han, Ho Jae;Park, In-Seok
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.193-204
    • /
    • 2017
  • The influence of triploidization on histological characteristics of retina, trunk kidney, liver and midgut tissue, and cell cycle of tail fin and gill tissue in far eastern catfish, Silurus asotus were analyzed. In the infertile triploid fish, the nucleus and/or cell size of secondary proximal tubule cells of trunk kidney, hepatocyte and midgut epithelium are much larger than those of the corresponding cells in the diploid fish (P<0.05). However, triploid tissue showed fewer number of outer nuclear layer in retina and nuclei in secondary proximal tubule of trunk kidney than those for diploid tissue. The mean percentages of the $G_l-$, the S- and the $G_2+M-phase$ fractions were 92.5%, 3.2% and 4.3% in tail fin tissue of diploid, and 93.4%, 2.6% and 4.0% in those of triploid, respectively. There were no significant differences in the percentages of each cell cycle fraction between diploid and triploid. The mean percentages of each phase fractions were 75.1%, 11.1% and 13.8% in gill tissue of diploid and 85.2%, 8.9% and 5.9% in those of triploid, respectively. The differences of cell cycle between tail fin tissue and gill tissue were statistically significant in diploid and triploid (P<0.05). Also, the differences between diploid and triploid were statistically significant in tail fin tissue and gill tissue (P<0.05). Cyclin D1 and cyclin E expressions were not significantly difference between gill tissue and tail fin tissue, and protein expressions of induced triploid were higher than those of diploid. Results from this study suggest that some characteristics in the triploid exhibiting larger cell and nucleus size with fewer number of cell than diploid can be used as an indicator in the identification of triploidization and ploidy level in far eastern catfish.