• Title/Summary/Keyword: Catenary-wire

검색결과 144건 처리시간 0.024초

전기철도 강체전차선로의 정적 상태 검출 기술 연구 (A Study on Technologies for Measuring Static Condition of Rigid Conductor System in Railway Electrification)

  • 나경민;이기원;박영
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.507-511
    • /
    • 2019
  • The purpose of an electric railway system contact wire is to supply electric energy to trains through a contacted pantograph. This energy is then converted into mechanical energy. Recent developments in overhead contact lines include the increase in the tension force up to 34 kN according to train speeds that reach up to 400 km/h with a verified safety. Rigid conductor catenary (R-Bar) for high speeds of up to 250 km/h have been developed in tunnels to save on construction costs. This is significant because minor defects in R-bars in aspects, such as height and stagger affect installation conditions. In this study, we propose the use of a detector that measures the static characteristics to reduce the R-bar installation errors. This detector has been developed to measure the height and stagger of the contact wire using video images.

고속철도의 속도에 따른 아크에 의한 전자파 방사 계산 (Radiated Electromagnetic Field Calculation due to Arc Discharge according to Speed of High Speed Train)

  • 한인수;이태형;조홍식;박춘수;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.98-100
    • /
    • 2011
  • High speed Train Systems are the energy supplied system via the pantograph through which the voltage and the current supplied by the catenary wire flow. The arc discharges generate owing to the contact loss between the catenary and the pantograph, and the electromagnetic fields radiate. There are many different phenomena between the static charges and the moving charges in view of the radiated electromagnetic fields. To calculate the electromagnetic filed about the moving charges, it is necessary to adapt Lorentz transformation. Actually, the particle which moves near the speed of light has the relativisitic phenomena. In addition, it is necessary to predict the electromagnetic field because the radiated electromagnetic field takes effect on the near electronic devices and the human beings. In this paper, we model the arc discharge into the dipole antenna model, adapt Lorentz transformation to the case that the electric railway cars move, and calculate the radiated electromagnetic field. By the calculation, we take the basis upon the electromagnetic prediction, and apply to the future research.

  • PDF

고속 시험선 구간에서의 G7 본선 시운전에 대비한 G7 팬터그래프와 KTX 가선계와의 인터페이스 연구 (A Study on the Interface between a G7 Pantograph and a KTX Catenary System in Preparation for G7 On-line Tests in the Korea High Speed Test Track)

  • 조용현;경진호;허신;최강윤;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.557-570
    • /
    • 2000
  • It is necessary to perform a study on the interrace between a G7 pantograph and a KTX catenary system prior to G7 on-line tests in the Korea High Speed Test Track in order to predict how high current collection quality can be obtained during the on-line tests and check if safety problems shall be caused b)Y the tests or not. According to the simulation results, current collection quality of the G7 pantograph at 350km/h is lower than that of a GPU pantograph at 300km/h, but the contact wire uplifts and average contact forces are within the safe-zone. In addition, the ratio of running speed (350km/h) to safe running. Therefore, the G7 on-line tests at 350km/h in the Korea High Speed Test Track is expected not to cause the safety problem.

  • PDF

철도교량의 종방향 동적 변위에 따른 전차선로 장력조정장치 거동특성에 관한 연구 (A Study on the Behavior Characteristics of a Tensioning Device of a Catenary System According to the Longitudinal Dynamic Displacement of Railroad Bridge)

  • 나연일;이재봉;김재문;김양수
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1517-1522
    • /
    • 2015
  • Since electric railroad vehicle pass through repeatedly on the railroad bridge, the dynamic load that causes the change of tension of contact wire affect it constantly. In this paper, we measured the dynamic displacement of the railroad bridges to analyze the effect of tension in the catenary. A result of dynamic measurement of the longitudinal displacement, it's maximum value was 39.9mm which was lower than the primary management criteria 378mm. Also on the based of a maximum temperature, it shows a feature that the longitudinal displacement value increased as temperature rise from April to October. In terms of behavior characteristics of a tensioning device, it was confirmed to be the value of 50mm stroke movement when the temperature changes ±5℃.

터널로 진입하는 고속 전철에 의한 공력 변화가 고속 가선계에 미치는 영향 분석(I) (an Analysis for the Effects of Changes of Aerodynamic Forces by a High Speed Train entering a Tunnel on a High Speed Catenary System(I))

  • 조용현;정흥채;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.333-343
    • /
    • 1999
  • When a high speed train enters a tunnel, wind speed passing through the train in a tunnel section becomes higher due to the reverse flow to the direction of the train. The higher wind speed gives more aerodynamic forces to the pantograph on the train. Therefore, it is necessary to perform aerodynamic and dynamic analyses in order to check whether the current collection of the high speed train, entering the tunnel, still remain permissible or not. In this paper, the aerodynamic analysis has been performed under the assumption that a high speed train at 300 km/h enters a tunnel whose cross sectional area Is 107/㎡ and length is 1000m. In consideration of the aerodynamic analysis results, the dynamic analysis has been performed based on the catenary and pantograph dynamic models in SEOUL-PUSAN high speed rail, using the GASENDO developed by RTRI. In addition, the fatigue life of the contact wire has been reviewed using the Goodman diagram. Based on the analysis results, it is concluded that the increase of the aerodynamic forces on the pantograph in the tunnel section shall not affect characteristics of current collection adversely except that motions of the pantograph may be constrained by bump-stops.

  • PDF

절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증 (Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation)

  • 이진희;박태원
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.339-346
    • /
    • 2012
  • 철도차량의 집전성능 및 이선율에 대한 사전 평가는 철도차량의 고속화와 더불어 중요시되는 문제이다. 본 논문에서는 유연체 다물체 동역학 해석 기법을 이용하여 가선과 판토그래프 사이의 동적상호작용에 대한 시뮬레이션 모델을 개발하였다. 해석 모델에서 판토그래프는 강체로 모델링 하였으며, 가선계는 탄성 대변형체의 거동을 효과적으로 표현할 수 있는 절대절점좌표를 이용하여 구현하였다. 또한, 가선계와 판토그래프 간의 동적 상호작용의 표현을 위하여 서로간의 상대운동은 슬라이딩 조인트를 이용하여 구속하였다. 개발된 해석 프로그램을 이용하여 철도차량의 주행 속도에 따라 발생하는 접촉력 및 이선율을 평가하였다. 개발 프로그램의 해석 모델 및 시뮬레이션에 대한 신뢰성은 가선계와 판토그래프의 동적 상호작용 시뮬레이션 방법에 대한 국제 규정인 EN 50318에 의하여 검증하였다. 해석 모델의 개발을 통하여 개발 중인 고속철도의 집전성능을 평가할 수 있는 기반을 마련하였다.

350km/h 본선 주행시험을 통한 한국형 고속열차 판토그라프의 접촉력 특성 평가 연구 (A Study on the Evaluation of Dynamic Characteristics of the Pantograph for the Korean High-Speed Train through 350km/h Trial Running Test)

  • 이희성;목진용
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.342-347
    • /
    • 2005
  • The Korean High-Speed Train(HSR 350x) had been developed by through 'G7-R&D project' in 1996-2002, and has been testing and evaluating it's reliability on the high-speed line until now. A number of core equipments designed and developed by using domestic technologies were boarded on the HSR 350x. In order to verify the performance of HSR 350x and core equipments such as traction system, brake system and pantograph, sophisticated testing and evaluating procedures should be considered and applied. In this paper, the tested and analysed results about the dynamic characteristics of HSR 350x pantograph are introduced in a view point of the mean contact force and it's variation trend, criterion of current collection, and up-lifting of contact wire when the MSR 350x running up to 350 km/h. Through the test and evaluation, we verified that HSR 350x pantograph had an excellent current collection performance and good dynamic characteristics as it had been designed.

250 km/h급 강체전차선로 설계파라미터 제시 (A Propose of Design Parameters for the Max. Speed of 250 km/h of Overhead Rigid Conductor System)

  • 이기원;조용현
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.740-744
    • /
    • 2017
  • Overhead Line is divided by two systems which are OCS (Overhead Catenary Line) and R-Bar (Overhead Rigid Conductor system). R-Bar has an advantage of maintenance and economic aspect comparing with OCS. R-Bar in Korea has developed for the max. speed of 120km/h, but it is evaluated up to the max. speed of 250 km/h in Europe. There are lots of mountains and underground sections in korea, it is really necessary to develop the R-Bar for a high-speed line. In the study, design parameters for the max. speed of 250 km/h of R-Bar was proposed. A bracket space, stiffness, and especially an installation tolerance of contact wire height at a bracket were considered as a parameter, and a dynamic behavior between a contact wire and pantograph was predicted by evaluated FEM simulation tool. The installation tolerance and bracket space are more important for the high-speed system. The proposed parameters was decided very conservative. Because the aerodynamic characteristics of a pantograph in tunnel is more severe than an open route and the simulation tool is not considered the such kind of aerodynamic characteristics.

집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석 (Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality)

  • 조용현
    • 한국철도학회논문집
    • /
    • 제17권1호
    • /
    • pp.7-13
    • /
    • 2014
  • 팬터그래프와 전차선 사이의 이선을 유발하는 주요 요인은 팬터그래프로 인하여 전차선에 야기되는 파동의 전파와 반사 그리고 열차 진행방향의 전차선로 강성변화이다. 본 논문의 목적은 200km/h급 일반철도와 300km/h급 고속철도에서 이선을 효과적으로 줄이기 위하여 앞서 언급하였던 두 가지 요인 중에서 어느 쪽을 중요하게 고려해야 하는지를 분석하는 것이다. 고속철도 경우에는 파동의 전파와 반사가 강성 변화에 비하여 집전성능에 영향을 더 크게 미친다. 증속을 위해서는 드로퍼 경량화와 전차선 고 장력 부여를 위한 고 강도 전차선 개발이 필요하다. 파동전파속도를 향상하기 위하여 조가선의 장력을 증가시키면 오히려 집전성능을 악화할 수 있음에 유의해야 한다. 200km/h급 일반철도의 경우에는 전차선로 강성 변화가 파동 전파 및 반사에 비하여 집전성능에 영향을 더 미치므로 강성변화를 완화시키기 위하여 경간길이 축소, 전차선로의 장력 증가 및 드로퍼배치 최적화가 필요하다.

도시철도 교량구간의 전차선 압상량에 대한 안전성 연구 (A study on the safety about Contact wire uplift of a metro-railroad bridge section)

  • 장우진;조용현;이기원;소선영;박종학;이재봉
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.821-831
    • /
    • 2006
  • There are 5 railway bridges in a Seoul metro network; Jamsil, Dangsan(line 2), Dongho(line 3), Dongjak(line 4) and Chungdam(line 7). Because there are strong wind and vibration in the bridges, uplift of a contact wire caused by pantographs in the bridge section is higher than in a normal section. If the uplift at the support point exceed 10 cm, an interference between pantographs and catenary system happens. Estimated maximum uplift is obtained by applying safety factor 2 to the simulation results. The application of the safety factor is needed for taking into account of the effect of the wind, etc. Previously, we can not check whether or not the safety factor is proper. Recently, we can measure the uplift during the train operation, as a telemetry system which can measure dynamic behavior of the contact wire has been developed. The aim of this research is to review how proper the safety factor related to the uplift is, based on the measurement. We performed simulations and experiments for the uplift at the Jamsil railway bridge. The simulations were performed for the every kind of the train passing the Jamsil bridge. In order to compare the analysis results with the measurement results, we measured the uplifts at the support when the trains passed the measuring point. Finally, we proposed adequate safety factor with the uplift for the bridge section.

  • PDF