• Title/Summary/Keyword: Catenary system

Search Result 411, Processing Time 0.021 seconds

Model test and numerical simulation of OC3 spar type floating offshore wind turbine

  • Ahn, Hyeon-Jeong;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Nowadays, the study on Floating Offshore Wind Turbines (FOWTs) is being performed globally. Dozens of numerical simulation tools have been developed for designing FOWTs and simulating their performances in combined wave and wind environments. On the other hand, model tests are still required to verify the results obtained from numerical simulation tools. To predict seakeeping performance of the OC3-Hywind platform, a OC3 spar model moored by a 3-leg catenary spread mooring system with a delta connection was built with a 1/128 scale ratio. The model tests were carried out for various sea states, including rotating rotor effect with wind in the Ocean Engineering Wide Tank, University Of Ulsan (UOU). The model test results are compared with the numerical simulations by UOU in-house code and FAST.

Development of a Technique for Detection of Contact Wire Wear using High-Speed Camera (고속카메라를 이용한 전차선 마모 검측 영상처리 알고리즘 개발)

  • Park, Young;Cho, Yong-Hyeon;Cho, Chul-Jin;Kim, Won-Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.632-637
    • /
    • 2010
  • The measurement of contact wire wear in electric railways is one of the key test parameters to increase speed and maintain safety in electric railways. Wear caused by continuous interaction between pantographs and contact wires has a negative effect on current collection quality and severely damaged contact wires might cause hazardous accidents. This paper introduces a non-contact optical-based contact wire wear measuring system that will replace conventional wear detecting methods conducted by maintenance vehicles or workers. The system is implemented by high-speed cameras that can collect images of contact wires during vehicle operation, a laser used to create images profile of the contact wire surface, and a computer used to process the collected images. The proposed system is designed to assist maintenance of overhead contact lines by creating geometrically plotted images of contact wires to detect contact wire wear during operation on conventional lines or high-speed lines.

A Study on the Evaluation of Dynamic Characteristics of the Pantograph for the Korean High-Speed Train through 350km/h Trial Running Test (350km/h 본선 주행시험을 통한 한국형 고속열차 판토그라프의 접촉력 특성 평가 연구)

  • Lee Hi-Sung;Mok Jin-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.342-347
    • /
    • 2005
  • The Korean High-Speed Train(HSR 350x) had been developed by through 'G7-R&D project' in 1996-2002, and has been testing and evaluating it's reliability on the high-speed line until now. A number of core equipments designed and developed by using domestic technologies were boarded on the HSR 350x. In order to verify the performance of HSR 350x and core equipments such as traction system, brake system and pantograph, sophisticated testing and evaluating procedures should be considered and applied. In this paper, the tested and analysed results about the dynamic characteristics of HSR 350x pantograph are introduced in a view point of the mean contact force and it's variation trend, criterion of current collection, and up-lifting of contact wire when the MSR 350x running up to 350 km/h. Through the test and evaluation, we verified that HSR 350x pantograph had an excellent current collection performance and good dynamic characteristics as it had been designed.

A comparison of coupled and uncoupled dynamic analysis for the flexible riser in shallow water

  • Jo, Chul-Hee;Kim, Do-Youb;Hwang, Su-Jin;Rho, Yu-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.195-201
    • /
    • 2014
  • Flexible risers have been used extensively in recent years for floating and early production systems. Such risers offer the advantage of having inherent heave compliance in their catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to subsea interfaces. Another advantage with flexible risers is their greater reliability. Concerns about fatigue life, gas permeation and pigging of lines have been overcome by extensive experience with these risers in production applications. In this paper, flexible riser analysis results were compared through coupled and uncoupled dynamic analyses methods. A time domain coupled analysis capability has been developed to model the dynamic responses of an integrated floating system incorporating the interactions between vessel, moorings and risers in a marine environment. For this study, SPM (Single Point Mooring) system for an FSU in shallow water was considered. This optimization model was integrated with a time-domain global motion analysis to assess both stability and design constraints of the flexible riser system.

A Experimental Study on Train Speed and Wave Propagation Speed of Contact Wire according to the Speed-up (속도향상에 따른 열차속도와 전차선 파동전파속도에 대한 실험적 연구)

  • Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1820-1823
    • /
    • 2013
  • An overhead catenary system is the one of the main subjects for increasing speed in electric railway. When a vehicle increases the speed over 350km/h, vibrations and wave propagation reflections occur severely. Therefore, the system suitable for the speed are needed. A wave propagation speed of contact wire is the main criteria to determine the tension for the system. Therefore, a train speed is restricted below 70% of wave propagation speed of it in European railway code. In this study, we measured a strain and uplift of contact wire while HEMU-430X tain is operated for the speed-up trial test in Kyungbu high-speed railway. The measured strain and uplift are analyzed with wave propagation speed according to the speed-up. The more a train speed reaches to a propagation speed, the more measured strain is high. Through the study, an experimental approach is performed about the code which a train speed is restricted below 70% of wave propagation speed of it.

A Propose of Design Parameters for the Max. Speed of 250 km/h of Overhead Rigid Conductor System (250 km/h급 강체전차선로 설계파라미터 제시)

  • Lee, Kiwon;Cho, Yong Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.740-744
    • /
    • 2017
  • Overhead Line is divided by two systems which are OCS (Overhead Catenary Line) and R-Bar (Overhead Rigid Conductor system). R-Bar has an advantage of maintenance and economic aspect comparing with OCS. R-Bar in Korea has developed for the max. speed of 120km/h, but it is evaluated up to the max. speed of 250 km/h in Europe. There are lots of mountains and underground sections in korea, it is really necessary to develop the R-Bar for a high-speed line. In the study, design parameters for the max. speed of 250 km/h of R-Bar was proposed. A bracket space, stiffness, and especially an installation tolerance of contact wire height at a bracket were considered as a parameter, and a dynamic behavior between a contact wire and pantograph was predicted by evaluated FEM simulation tool. The installation tolerance and bracket space are more important for the high-speed system. The proposed parameters was decided very conservative. Because the aerodynamic characteristics of a pantograph in tunnel is more severe than an open route and the simulation tool is not considered the such kind of aerodynamic characteristics.

A Verification of the Contact Dynamics of the Current Collection System on a Test Run (실차실험에 의한 집전계의 접촉 동특성 규명)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.414-419
    • /
    • 2007
  • The contact characteristics of the current collection system are investigated by analyzing data collected during a test run of the Korean high speed rail vehicle. For the analysis, the signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. In the frequency domain, the pantograph response consists of low frequency components related to the rigid-body motion of the panhead assembly and high frequency components due to the structural vibration modes of the pantograph. The analysis shows that the inclusion of the high frequency structural vibration modes of the pantograph in the contact force calculation has a negligible effect on the predicted mean value of the contact force but significantly affects the magnitude of its fluctuations. This finding implies that numerical simulations using lumped element models of the pantograph may accurately predict the mean contact force but is limited in its capacity for predicting the fluctuation about the mean. Since the ratio of the fluctuation to the mean in the contact force increases with increased train speed, the limitation of the predictions based on numerical simulation results becomes more pronounced at higher train speed.

A Study on Technologies for Measuring Static Condition of Rigid Conductor System in Railway Electrification (전기철도 강체전차선로의 정적 상태 검출 기술 연구)

  • Na, Kyung Min;Lee, Kiwon;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.507-511
    • /
    • 2019
  • The purpose of an electric railway system contact wire is to supply electric energy to trains through a contacted pantograph. This energy is then converted into mechanical energy. Recent developments in overhead contact lines include the increase in the tension force up to 34 kN according to train speeds that reach up to 400 km/h with a verified safety. Rigid conductor catenary (R-Bar) for high speeds of up to 250 km/h have been developed in tunnels to save on construction costs. This is significant because minor defects in R-bars in aspects, such as height and stagger affect installation conditions. In this study, we propose the use of a detector that measures the static characteristics to reduce the R-bar installation errors. This detector has been developed to measure the height and stagger of the contact wire using video images.

Investigation of Effective Maintenance System for the Infra on the Conventional Line Prepared for the Tilting Train Service (틸팅열차 상용화대비 기존선 인프라시스템의 효율적 유지보수체계 검토)

  • Yoo, Keun-Su;Lee, Chang-Hun;An, Gang-Yell;Kim, Joung-Tea
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.79-87
    • /
    • 2008
  • The major objective of this study is to investigate the effective maintenance system for the infrastructure on the conventional lines in which the tilting train runs. In order to the speed-up of conventional lines that have many curve lines, there needs a improvement construction of substructure such as the straight or double track work and so on. But in this case, it needs to have a plenty of the cost and the period. Therefore, the tilting train which provides the high-speed service effectively in curve tracks was developed. Besides, the efficiency prediction and the linear fitness of the existing conventional lines for a tiling train service were examined on the preceding study which was the development of track system innovation technology for speed-up of them. So, in this paper we propose the more effective maintenance method than the existing it in order to securing the high reliability and safety classified by the infrastructure, in analyzing foreign materials and the maintenance as well as the inspection cycle concerning domestic infrastructures of the track and the catenary etc. on the railway. And we look forward to playing a decisive role as reference material for the effective improvement of the existing maintenance about the infra on the conventional lines for the commercial service of the tilting train.

  • PDF

A Comparison of Dynamic Analysis for the Flexible Riser in Shallow Water (천해에서 유연라이저의 동적해석 결과 비교)

  • Jo, Chul-Hee;Kim, Do-Youb;Rho, Yu-Ho;Kim, In-Ho
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.4
    • /
    • pp.149-155
    • /
    • 2014
  • Flexible risers have been used extensively in recent years for floating and early production systems. Such risers offer the advantage of having inherent heave compliance in their catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to subsea interfaces. Another advantage with flexible risers is their greater reliability. Concerns about fatigue life, gas permeation and pigging of lines have been overcome by extensive experience with these risers in production applications. In this paper, flexible riser analysis results were compared through coupled and uncoupled dynamic analyses methods. A time domain coupled analysis capability has been developed to model the dynamic responses of an integrated floating system incorporating the interactions between vessel, moorings and risers in a marine environment. For this study, SPM (Single Point Mooring) system for an FSU in shallow water was considered. This optimization model was integrated with a time-domain global motion analysis to assess both stability and design constraints of the flexible riser system.