• Title/Summary/Keyword: Catechol estrogens

Search Result 9, Processing Time 0.034 seconds

Effect of Natural Compounds on Catechol Estrogen-Induced Carcinogenesis

  • Sung, Nam-Ji;Park, Sin-Aye
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The hydroxylation of estradiol results in the formation of catechol estrogens such as 2-hydroxyestradiol ($2-OHE_2$) and 4-hydroxyestradiol ($4-OHE_2$). These catechol estrogens are further oxidized to quinone metabolites by peroxidases or cytochrome P450 (CYP450) enzymes. Catechol estrogens contribute to hormone-induced carcinogenesis by generating DNA adducts or reactive oxygen species (ROS). Interestingly, many of the natural products found in living organisms have been reported to show protective effects against carcinogenesis induced by catechol estrogens. Although some compounds have been reported to increase the activity of catechol estrogens via oxidation to quinone metabolites, many natural products decreased the activity of catechol estrogens by inhibiting DNA adduct formation, ROS production, or oxidative cell damage. Here we focus specifically on the chemopreventive effects of these natural compounds against carcinogenesis induced by catechol estrogens.

Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer

  • Park, Sin-Aye
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Excessive exposure to estrogens is the most important risk factor for the development of hormone-sensitive cancers, especially breast cancer. Estrogen stimulates the expression of genes and proteins involved in cell proliferation by binding to estrogen receptor (ER). Another possible mechanism of ER-independent carcinogenicity of estrogens is based on the hydroxylation of estradiol resulting in the formation of catechol estrogens. Catechol estrogen 4-hydroxyestradiol ($4-OHE_2$) is further oxidized to catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. Evidence increasingly supports the critical role of $4-OHE_2$ in hormonal carcinogenesis via DNA adduct formation or production of reactive oxygen species, which finally contribute to the transformation of normal mammary epithelial cells and the enhanced growth of breast cancer cells. It is also reported that the level of $4-OHE_2$ or its quinones is highly up-regulated in urine or tissues of breast cancer patients. Thus, we highlight the oncogenic roles of $4-OHE_2$ in catechol estrogen-induced breast carcinogenesis.

Dual roles of estrogen metabolism in mammary carcinogenesis

  • Chang, Min-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.423-434
    • /
    • 2011
  • A female hormone, estrogen, is linked to breast cancer incidence. Estrogens undergo phase I and II metabolism by which they are biotransformed into genotoxic catechol estrogen metabolites and conjugate metabolites are produced for excretion or accumulation. The molecular mechanisms underlying estrogen-mediated mammary carcinogenesis remain unclear. Cell proliferation through activation of estrogen receptor (ER) by its agonist ligands and is clearly considered as one of carcinogenic mechanisms. Recent studies have proposed that reactive oxygen species generated from estrogen or estrogen metabolites are attributed to genotoxic effects and signal transduction through influencing redox sensitive transcription factors resulting in cell transformation, cell cycle, migration, and invasion of the breast cancer. Conjuguation metabolic pathway is thought to protect cells from genotoxic and cytotoxic effects by catechol estrogen metabolites. However, methoxylated catechol estrogens have been shown to induce ER-mediated signaling pathways, implying that conjugation is not a simply detoxification pathway. Dual action of catechol estrogen metabolites in mammary carcinogenesis as the ER-signaling molecules and chemical carcinogen will be discussed in this review.

Resveratrol, an Antioxidant in Red Wine, Inhibits Metabolic Formation of Catechol Estrogens and Their Induction of Oxidative Dna Damage and Cell Death

  • Chen, Zhi-Hua;Hurh, Yeon-Jin;Na, Hye-Kyung;Kim, Do-Hee;Chun, Young-Jin;Kim, Dong-Hyun;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.182-182
    • /
    • 2003
  • cResveratrol (3,5,4'-trihydroxystilbene), a naturally occurring phytoalexin present in grapes and other foods, has been well documented for chemopreventive effects in different systems based on its striking inhibition of diverse cellular events associated with tumor initiation, promotion and progression.(omitted)

  • PDF

Induction of Reactive Oxygen Species and Malignant Transformation by Tcdd Through Metabolic Formation of Catechol Estrogens

  • Na, Hye-Kyung;Chen, Zhi-Hua;Kim, Jung-Hwan;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.188-188
    • /
    • 2003
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototype of halogenated aromatic hydrocarbons, is a persistent environmental contaminant and one of the most powerful tumor promoters. The molecular mechanism underlying induction of tumor promotion by TCDD has not been elucidated.(omitted)

  • PDF

Expression of Human Liver 3,4-Catechol estrogens UDP-Glucuronosyltransferase cDNA in COS 1 Cells

  • Ahn, Mee-Ryung;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.465-470
    • /
    • 1997
  • The human cDNA clone UDPGTh2, encoding a liver UDP-glucuronosyltransferase (UDPGT), was isolated from a .gamma.gt 11 cDNA library by hybridization to mouse transferase cDNA clone, UDPGTm1. The two clones had 74% nlicleotide sequence identities in the coding region. UDPGTh2 encoded a 529 amino acid protein with an amino terminus membrane-insertion signal peptide and a carboxyl terminus membrane-spanning region. In order to establish substrate specificity, the clone was inserted into the pSVL vector (pUDPGTh2) and expressed in COS 1 cells. Sixty potential substrates were tested using cells transfected with pUDPGTh2. The order of relative substrate activity was as follows: 4-hydroxyestrone > estriol >2-hydroxyestriol > 4-hydroxyestradiol > $6{\alpha}$-hydroxyestradiol >$5{\alpha}$-androstane-$3{\alpha}$, $11{\beta}$, $17{\beta}$-triol=5${\beta}$-androstane-$3{\alpha}$ ${\beta}$, $17{\beta}$-triol. There were only trace amounts of gulcuronidation of 2-hydroxyestradiol and 2-hydroxyestrone, and in contrast to other cloned transferase, no gulcuronidation of either the primary estrogens and androgens (estrone, $17{\beta}$estradiol/testosterone, androsterone) or any of the exogenous substrates tested was detected. A lineweaver-Burk plot of the effect of 4-hydroxystrone concentration on the velocity of glucuronidation showed an apparent Km of $13{\mu}M$. The unique specificity of this transferase might play an important role in regulating the level and activity of these potent and active estrogen metabolites.

  • PDF

Comparison of Glucuronidating Activity of Two Human cDNAs, UDPGTh1 and UDPGTh2

  • Kim, Soon-Sun;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.454-458
    • /
    • 1997
  • Two human liver UDP-glucuronosyltransferase cDNA clones, HLUG25 and UDPGTh2 were previously shown to encode isozymes active in the glucuronidation of hyodeoxycholic acid (HDCA) and certain estrogen derivatives (e.g., estriol and 3,4-catechol estrogens), respectively. in this study we have found that the UDPGTh2-encoded isoform (UDPGTh2) and HLUG25-encoded isoform (UDPGThl) have parallel aglycone specificities. When expressed in COS 1 cells, each isoform metabolized three types of dihydroxy- or trihydroxy-substituted ring structures, including the 3,4-catechol estrogen (4-hydroxyestrone), estriol, 17-epiestriol, and HDCA, but the UDPGTh2 isozyme was 100-fold more efficient than UDPGTh1. UDPGTh1 and UDPGTh2 were 86% identical overall (76 differences out of 528 amino acids), including 55 differences in the first 300 amino acids of the amino terminus, a domain which conferred the substrate specificity. The data indicated that a high level of conservation in the amino terminus was not required for the preservation of substrate selectivity. Analysis of glucuronidation activity encoded by UDPGTh1/UDPGTh2 chimeric cDNA constructed at their common restriction sites, Sac I (codon 297), Nco I (codon 385), and Hha I (codon 469), showed that nine amino acids between residues 385 and 469 were important for catalytic efficiency, suggesting that this region represented a domain which was critical for the catalysis but distinct from that responsible for aglycone-selection. These data indicate that UDPGTh2 is a primary isoform responsible for the detoxification of the bile salt intermediate as well as the active estrogen intermediates.

  • PDF