• 제목/요약/키워드: Catechol degradation

검색결과 72건 처리시간 0.027초

p-Terphenyls from Fungus Paxillus curtisii Chelate Irons: A Proposed Role of p-Terphenyls in Fungus

  • Lee, In-Kyoung;Ki, Dae-Won;Kim, Seong-Eun;Lee, Myeong-Seok;Song, Ja-Gyeong;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.652-655
    • /
    • 2013
  • Diverse p-terphenyl compounds, named curtisians, have been isolated from the fungus Paxillus curtisii, and degradation of wood by this fungus is thought to be progressed by iron chelation of p-terphenyl curtisians. In this study, the iron chelation ability of p-terphenyls has been proved by chrome azurol S (CAS) assay, reducing power, and UV-visible spectroscopic analyses. The catechol moiety of p-terphenyl is an essential factor for the potent iron chelation ability, and thus deacylated curtisian with a tetrahydroxyl moiety in the central ring of p-terphenyl is more effective than acylated curtisians.

초음파에 의한 수중의 난분해성 방향족화합물의 반응특성 (Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound)

  • 손종렬;모세영
    • 한국물환경학회지
    • /
    • 제18권4호
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

Regulation of Phenol Metabolism in Ralstonia eutropha JMP134

  • Kim Youngjun
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.27-30
    • /
    • 2002
  • Ralstonia eutrupha JMP134 is a well-known soil bacterium which can metabolite diverse aromatic compounds and xenobiotics, such as phenol, 2,4-dichlorophenoxy acetic acid (2, 4-D), and trichloroethylene (TCE), etc. Phenol is degraded through chromosomally encoded phenol degradation pathway. Phenol is first metabolized into catechol by a multicomponent phenol hydroxylase, which is further metabolized to TCA cycle intermediates via a meta-cleavage pathway. The nucleotide sequences of the genes for the phenol hydroxylase have previously been determined, and found to composed of eight genes phlKLMNOPRX in an operon structure. The phlR, whose gene product is a NtrC-like transcriptional activator, was found to be located at the internal region of the structural genes, which is not the case in most bacteria where the regulatory genes lie near the structural genes. In addition to this regulatory gene, we found other regulatory genes, the phlA and phlR2, downstream of the phlX. These genes were found to be overlapped and hence likely to be co-transcribed. The protein similarity analysis has revealed that the PhlA belongs to the GntR family, which are known to be negative regulators, whereas the PhlR2 shares high homology with the NtrC-type family of transcriptional activators like the PhlR. Disruption of the phlA by insertional mutation has led to the constitutive expression of the activity of phenol hydroxylase in JMP134, indicating that PhlA is a negative regulator. Possible regulatory mechanisms of phenol metabolism in R. eutropha JMP134 has been discussed.

  • PDF

Photo-assisted Fenton 반응에 다양한 Fe(III) chelator를 적용한 LNAPL(BTEX/MTBE)오염 지하수 처리에 관한 연구 (The Treatment of LNAPL(BETXlMTBE) Contaminated Groundwater Applying Photo-assisted Fenton Reaction with Various Fe(III) Chelator)

  • 박종훈;도시현;이홍균;조영훈;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제14권2호
    • /
    • pp.26-32
    • /
    • 2009
  • 본 연구에서는(Fe$^{3+}$+chelating agent)/H$_2$O$_2$ 공정 [Fe(III) 1mM, ocalate 6mM, H$_2$O$_2$ 3%, pH 6]과 UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$ 공정 [UV dose 17.4kWh/L, Fe(III) 1mM, oxalate 6mM, H$_2$O$_2$ 1%, pH6]에서 BTEX(benzene, toluene, ethylbenzene, xylene)를 분해하기위해 다양한 착제를 토입, 그 분해효율을 비교하였다. 착제의 종류는 catechol, NTA, gallic, acetyl acetone, succinic, acetate, EDTA, citrate, malonate, 그리고 oxalate,총 10가지 종류의 착제를 사용하였으며, 그 중,acetate를 착제로 사용한 경우, 가장 높은 분해효율을 나타내었다. 또한, UV를 조사한 경우, 모든 착제에 대한 BTEX의 분해효율이 UV를 조사하지 않은 (Fe$^{3+}$+chelating agent)/H$_2$O$_2$ 공정의 분해효율보다 높은 것으로 나타났다. 또한BTEX와 무연 휘발유의 첨가제로 사용되고 있는 MTBE(methl tert-butylether)의 혼합복합물(각각의 농도는 200mg/L)에 대해서도 acetate를 착제로 사용한 UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$공정에서 높은 분해효율을 보였다. 이 경우, BTEX는 반응시간 180분 만에 완전 분해되었으며, MTBE의 경우, 85%의 분해효율을 보였다. 이러한 실험 결과는 acetate를 착제로 사용한 UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$공정은 BTEX 분해효율뿐만 아니라, BTEX와 MTBE복합오염물의 분해효율도 증가시킬수 있음을 입증하고 있다.

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

디젤오염지역에서 분리한 세균 Sphingomonas sp. 3Y의 석유계 탄화수소분해특성 (Characterization of Petroleum Hydrocarbon Degradation by a Sphingomonas sp. 3Y Isolated from a Diesel-Contaminated Site.)

  • 안영희;정병길;성낙창;이영옥
    • 생명과학회지
    • /
    • 제19권5호
    • /
    • pp.659-663
    • /
    • 2009
  • 장기간 경유로 오염된 지역의 토양으로부터 분리한 세균 3Y는 석유계 탄화수소를 구성하는 다양한 화합물을 유일 탄소원으로하여 성장하였다. Sphingomonas sp. 3Y는 지방족 화합물은 물론이고 방향족 화합물을 이용해서 성장할 수 있었다. 지방족 화합물로서는 hexane과 hexadecane을 이용하여 성장하였고, 한편 방향족 화합물로서는 BTEX는 물론이고 phenol, biphenyl, 또는 phenanthrene을 유일 탄소원으로 이용하여 성장하였다. 본 균주는 indole과 catechol을 이용한 실험결과 방향족 탄화수소의 생분해 과정에서 맨 첫 단계 반응에 관여하는 효소인 aromatic ring dioxygenase 활성과 benzene 환을 깨는 효소인 meta-cleavage dioxygenase 활성을 나타내었다. Sphingomonas sp. 3Y의 16S rRNA 유전자의 염기서열 분석과 계통수 작성 결과 본 균주는 ${\alpha}$-Proteobacteria인 Sphingomonas속에 해당하였으며 지금까지 잘 알려진 석유계 탄화수소를 분해하는 Sphingomonas sp. 균주들과는 다른 cluster를 형성하였다. 다양한 석유계 탄화수소 성분을 이용하여 성장하는 Sphingomonas sp. 3Y는 유류로 오염된 토양의 복원에 유용하게 사용될 것으로 여겨지며 이 균주의 최적 분해 조건을 조사한다면 그 결과는 이 균주가 분리된 오염지역의 생물학적 분해를 최적화하는데 기여할 것이다.

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2- Dioxygenase from Comamonas sp.

  • Lee Na Ri;Kwon Dae Young;Min Kyung Hee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2001년도 추계학술대회
    • /
    • pp.16-25
    • /
    • 2001
  • A genomic library of biphenyl-degrading strain Comamonas sp. SMN4 was constructed by using the cosmid vector pWE15 and introduced into Escherichia coli. Of 1,000 recombinant clones tested, two clones that expressed 2,3-dihydroxybiphenyl 1,2-dioxygenase activity were found (named pNB 1 and pNB2). From pNB1 clone, subclone pNA210, demonstrated 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, is isolated. 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO, BphC) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the Comamonas sp. SMN4 gene bphC, which encodes 23DBDO, was cloned into a plasmid pQE30. The His-tagged 23DBDO produced by a recombinant Escherichia coli, SG 13009 (pREP4)(pNPC), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 23DBDO construction was active. SDS-PAGE analysis of the purified active 23DBDO gave a single band of 32 kDa; this is in agreement with the size of the bphC coding region. The 23DBDO exhibited maximum activity at pH 9.0. The CD data for the pHs, showed that this enzyme had a typical a-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. This structure maintained up to pH 10.5. However, this high stable folding strucure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The result of CD spectra observed with pH effects on 23DBDO activity, suggested that charge transition by pH change have affected change of conformational structure for 23DBDO catalytic reaction. The $K_m$ for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7 $\mu$M, 24 $\mu$M, 50 mM and 625 $\mu$M.

  • PDF

경산 임당고분 출토 철제 고리자루칼 칠의 유기물 분석 (Organic Material Analysis of a Lacquered Wooden Sheath of Long Sword with Ring Pommel Excavated in Imdang Ancient Tomb)

  • 박종서;조하늬;이재성
    • 보존과학회지
    • /
    • 제34권5호
    • /
    • pp.369-377
    • /
    • 2018
  • 경북 경산에 위치한 원삼국시대 고분인 임당1호분에서 출토된 칠초 철제 고리자루칼의 칠편에 대해 칠의 구성성분과 풍화상태를 확인하기 위해 열분해/GC/MS법으로 유기물을 분석하였다. 직접 열분해/GC/MS법에서 칠편과 원주산 건조옻이 대체적으로 유사한 크로마토그램을 보였다. THM(thermally assisted hydrolysis and methylation)-열분해/GC/MS법의 경우 칠편에서 한국에 자생하는 옻나무 종의 특징적인 성분(1,2-dimethoxy-3-pentadecylbenzene 등)이 관찰되었다. 또한, dimethyl nonanedioate 등 건성유에서 비롯되는 것으로 보이는 성분도 검출되었다. 칠편에서 산화된 catechol 성분이 다량 검출되는 것으로 보아 칠의 열화가 우루시올 성분의 산화와 관련 있을 것으로 추정된다. 이로부터 임당1호분 고리자루칼 칠은 옻과 건성유를 사용하였고 오랜 시간의 경과로 산화가 많이 진행된 상태인 것으로 판단된다.

Biological Detoxification of Lacquer Tree (Rhus verniciflua Stokes) Stem Bark by Mushroom Species

  • Choi, Han-Seok;Kim, Myung-Kon;Park, Hyo-Suk;Yun, Sei-Eok;Mun, Sung-Phil;Kim, Jae-Sung;Sapkota, Kumar;Kim, Seung;Kim, Tae-Young;Kim, Sung-Jun
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.935-942
    • /
    • 2007
  • The stem bark of Rhus verniciflua (RVSB) has been used in herbal medicine to treat diabetes mellitus and stomach ailments for thousands of years in Korea, despite its content of the plant allergen, urushiol. A new biological approach for the removal of urushiol from RVSB using mushrooms is described. All mushroom species (11 sp.) employed in this study were able to grow on RVSB, although the growth rate (mm/day) was lower than the control (sawdust). The components of urushiol congeners [C15 triene (m/z 314), C15 diene (m/z 316), C15 monoene (m/z 318), and C15 saturated (m/z 320)] were purified by HPLC and identified by GC-MS. A C15:3 (3-pentadecatrienly catechol) was found to be most abundant in RVSB. Urushiol analogues decreased remarkably from 154.15 to 10.73 mg/100 g (approximately 93%) by Fomitella fraxinea, whereas Trametes vercicolor showed only a 1.46% degradation capacity despite its 2 fold higher growth rate. Similarly, laccase activity was found to be high for F. fraxinea and low for T. vercicolor. Moreover, approximately 98% detoxification was accomplished by F. fraxinea cultivated on RVSB supplemented with 20%(w/w) rice bran. These findings suggest that mushrooms can be used in the detoxification of RVSB.