• Title/Summary/Keyword: Catchment area

Search Result 326, Processing Time 0.027 seconds

A Study on the Monthly River-Inflow Evaluation of the Keumgang Estuary Reservoir (금강 하구호의 월 유입량 추정에 관한 연구)

  • 이재형;김양일
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.83-83
    • /
    • 1994
  • The major objective of this study is to analyze the water balance of the Keumgang Estuary Reservoir in the Keum River basin. This basin is one of the catchment area which water utilization is very complicated. For the study of this area, this paper is to evaluate the monthly river-inflow of the Keumgang Estuary Resorvoir. Here, two approach methods are proposed which can take care of the natural and the low flow. The results are as follows. The natural flow at the Keumgang Estuary Reservoir during the wet season was decreased to 8.4% and increased from 0.4% to 17.6% during the dry season by the effects of Deachung Reservoir at the upper basin. The monthly fluctuation of the low flow during My-June varies to a great extent, when large amounts of irrigation water are required.

  • PDF

Morphological Representation of Channel Network by Dint of DEM (DEM을 이용한 수로망의 형태학적 표현)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.287-297
    • /
    • 2007
  • The procedures for identifying channel network are suggested by exploring the scaling property between the local slope and the contributing area, given that the area threshold criterion is an indispensable complement to the slope-area threshold criterion. Through the use of the above procedures and the field data, the basin slopes illustrate the trends of large scatters in space for the geomorphologic/topographic factors. According to the scaling regimes of them both the forms of landscape can be classified as topographic divergence and convergence. The presentation of the procedures proposed in this study is implemented in the case study on Seolma experimental catchment in Korea. As a result the dynamic behaviors of basin are confirmed, and thus the dynamics of channel head advance and channel network are shown to represent better than the method using the topographic chart manually.

Design Technique of Rainwater Utilizing System (우수이용 시스템의 설계기법)

  • Jeon, In-Bae;Song, Si-Hun;Ji, Hong-Gi;Lee, Sun-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.587-596
    • /
    • 2001
  • The purpose of this study is to improve inefficient use of rainwater in island area where it uses rainwater to supply the domestic water and to propose rainwater utilizing system that is most appropriate to the characteristics of precipitation in Korea. To accomplish these purposes, Cheju island was chosen as a study area and the design for the roof area and tank size of rainwater utilizing system was based on the result of the relationship between the actual precipitation and domestic water data which was used in the analysis by run theory to use run theory. Since the result of the analysis indicated that the designed rainwater catchment system was operated stably in Cheju island, the same result is expected in other island too. Therefore, if this system is executed together with the roof rehabilitation work of island area, it will bring positive effects on broth the improvement of residental environment and the security of domestic water.

  • PDF

Analysis of inundation and rainfall-runoff in mountainous small catchment using the MIKE model - Focusing on the Var river in France - (MIKE 모델을 이용한 산지소유역 강우유출 및 침수 분석 - 프랑스 Var river 유역을 중심으로 -)

  • Lee, Suwon;Jang, Dongwoo;Jung, Seungkwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Recently, due to the influence of climate change, the occurrence of damage to heavy rain is increasing around the world, and the frequency of heavy rain with a large amount of rain in a short period of time is also increasing. Heavy rains generate a large amount of outflow in a short time, causing flooding in the downstream part of the mountainous area before joining the small and medium-sized rivers. In order to reduce damage to downstream areas caused by flooding, it is very important to calculate the outflow of mountainous areas due to torrential rains. However, the sewage network flooding analysis, which is currently conducting the most analysis in Korea, uses the time and area method using the existing data rather than calculating the rainfall outflow in the mountainous area, which is difficult to determine that the soil characteristics of the region are accurately applied. Therefore, if the rainfall is analyzed for mountainous areas that can cause flooding in the downstream area in a short period of time due to large outflows, the accuracy of the analysis of flooding characteristics that can occur in the downstream area can be improved and used as data for evacuating residents and calculating the extent of damage. In order to calculate the rainfall outflow in the mountainous area, the rainfall outflow in the mountainous area was calculated using MIKE SHE among the MIKE series, and the flooding analysis in the downstream area was conducted through MIKE 21 FM (Flood model). Through this study, it was possible to confirm the amount of outflow and the time to reach downstream in the event of rainfall in the mountainous area, and the results of this analysis can be used to protect human and material resources through pre-evacuation in the downstream area in the future.

Application of Benefit Transfer Method to Estimate the Willingness-to-pay in Planning the Construction of the Integrated Sewerage System at the Catchment Areas of Dams (댐상류지역 하수도시설 확충사업에 관한 지불의사액 추정을 위한 편익전환기법의 적용)

  • Jeong, Dong-Hwan;Jin, Young-Sun;Park, Kyoo-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 2006
  • Benefit transfer is a method, which obtains an estimate for the economic valuation of non-marketed commodities at a given site through the analysis of studies that have been previously carried out to value similar commodities at a different location. The objective of this study was to estimate benefit transfer values for the construction of the integrated sewerage system in the catchment area of dams in Korea. For pooled data analysis, five models were suggested in this study. Among five models, model 2 showed only 6 to 7% errors when the willingness-to-pay(WTP) predicted in the policy-site, Dam Soyang was compared with that estimated using contingent valuation method(CVM) in the study-sites, Dams Namgang, Hapcheon, and Daecheong. However, the WTP estimate predicted by model 1 showed the absolute errors of 42 to 47% when it was compared with WTP estimated using CVM in Dams Andong and Imha. It seemed that residents of Dams Andong and Imha have feeling of being victimized since two dams were constructed very adjacently, the upstream area was designated as drinking water source protection zone, and thereafter their developmental economical actions have been significantly restricted.

Evaluation on the Hydrologic Effects after Applying an Infiltration Trench and a Tree Box Filter as Low Impact Development (LID) Techniques (저영향 개발기법의 침투도랑과 나무여과상자 적용 후 수문학적 효과 평가)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Tobio, Jevelyn Ann S.;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • In this research, the hydrologic effects between a pre-existing urban landuse and low impact development (LID) applied conditions were compared and evaluated. The infiltration trench and tree box filter that were utilized in LID represent only 1% of the catchment area that they drain. Storm event monitoring were conducted from July 2010 to July 2014 on a total of 22 storm events in both LID sites. After LID, hydrological improvement was observed as the sites exhibited a delay (lag time) or reduction in the magnitude, frequency and duration of runoff and flow peaks as the rainfall progress. In addition, the maximum irreducible peak flow reduction for infiltration trench was found to be 61% and 33% for the tree box filter when rainfall was 40 mm and 30 mm, respectively. In designing LID, it is recommended to consider the storage capacity and catchment area, as well as the amount of rainfall and runoff on the site.

Hydrologic and Hydraulic Factors Affecting the Long-term Treatment Performance of an Urban Stormwater Tree Box Filter (도시 강우유출수를 처리하는 나무여과상자의 장기 처리효율에 영향을 주는 수리학적 및 수문학적 인자 연구)

  • Geronimo, Franz Kevin F.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.715-721
    • /
    • 2017
  • Tree box filters, an example of bioretention systems, were compacted and versatile urban stormwater low impact development technique which allowed volume and water quality treatment performance to be adjusted based on the hydrologic, runoff quality and catchment characteristics. In this study, the overall performance of a 6 year-old tree box filter receiving parking lot stormwater runoff was evaluated. Hydrologic and hydraulic factors affecting the treatment performance of the tree box filter were also identified and investigated. Based on the results, the increase in rainfall depth caused a decrease in hydrologic and hydraulic performance of the tree box filter including volume, average flow, and peak flow reduction (r = -0.53 to -0.59; p<0.01). TSS, organics, nutrients, and total and soluble heavy metals constituents were significantly reduced by the system through media filtration, adsorption, infiltration, and evapotranspiration mechanisms employed in the tree box filter (p<0.001). This significant pollutant reduction by the tree box filter was also found to have been caused by hydrologic and hydraulic factors including volume, average flow, peak flow, hydraulic retention time (HRT) and runoff duration. These findings were especially useful in applying similarly designed tree box filter by considering tree box filter surface area to catchment area of less than 1 %.

Determination of Urban-Life Housing Price and Return Ratio by Location (도시형생활주택의 입지별 분양가격 및 수익률 결정요인)

  • Park, Jin-A;Woo, Chul-Min;Baik, Min-Seok;Shim, Gyo-Eon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.469-481
    • /
    • 2012
  • The demand for small-sized housing has been increasing due to the recession of real-estate price and the increase of small-sized households. Especially, the demand for affordable housing has been increasing since the style of housing and the location fits the lifestyle of small-sized household. In addition, many investors have been buying it because it has advertised as an investment property holding high-return ratio. However, an empirical analysis about the selling price and the return ratio has not been done yet. Therefore, the purpose of the research is having the empirical analysis based on the selling price and return ration by examining the affordable housing in Seoul. The urban-life housing more than 50 generations of the Seoul was irradiated for the analysis. And the linear regression analysis and PLS(Partial Least Square Regression) analysis was used for the empirical analysis. The result of analysis, based on the linear regression analysis, showed that factors including neighboring housing price and subway catchment area have a significant effect to the determinant factors of housing price. The analysis for return ratio showed neighboring housing price, subway catchment area and amenities affects the ratio. Especially, the fault of using small sample was covered by using the partial least square regression in this research.

An Analysis on the Long-Term Runoff of the Yong San River (영산강의 장기유출량에 관한 고찰)

  • 한상욱;정종수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4184-4194
    • /
    • 1976
  • Located in the southwestern part of Korea, the Yong San Gang river flows generally northeast to southwest, and because of the specific location, topography and climate, the basin area is subject to recurrent drought and flood damages. To eliminate the cause of such damages and ensure an increase in the farm income by means of effective irrigation supply and increased cropping intensity, efforts are being made to speed up implementation of an integrated agricultural development project which would include construction. of an estuary dam and irrigation facilities as well as land development and tidal reclarnation. In formulating a basin development project plan, it is necessary to study a series of long-term runoff data. The catchment area at the proposed estuary damsite is 3,471$\textrm{km}^2$ with the total length of the river channel up to this point reaching 138km. An analysis of runoff in this area was carried out. Rainfall was estimated by the Thiessen Network based on records available from 15 of the rainfall observation stations within the area. Out of the 15 stations, Kwang Ju and Mok Po stations were keeping long-term precipitation records exceeding some 60 years while the others were in possession of only 5-10 years records. The long-term records kept by those stations located in the center of the basin were used as base records and records kept by the remaining stations were supplemented using the coefficient of correlation between the records kept by the base stations and the remainder. The analyses indicate that the average annual rainfall measured at Kwang Ju during 1940-1972 (33 years) amounts to 1,262mm and the areal rainfall amounts to 1,236mm. For the purpose of runoff analysis, 7 observatories, were set up in the middle and lower reaches of the river and periodic measurements made by these stations permitted analysis of water levels and river flows. In particular, the long-term data available from Na Ju station significantly contributed to the analysis. The analysis, made by 4-stage Tank method, shows that the average annual runoff during 1940-1972 amounts to 2,189 million ㎥ at the runoff rate of 51%. As for the amount of monthly runoff, the maximum is 484.2 million ㎥ in July while the minimum is 48.3 million ㎥ in January.

  • PDF

A Study on the Physical Characteristics of Irrigation Reservoirs in Korea (우리나라 관개용 흙댐 저수지의 외형적 제특성에 관한 연구)

  • 정두희;안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.29-37
    • /
    • 1983
  • This study was carried out not only to prepare available materials that can be utilized in basic planning of irrigation reservoirs, but also to contribute to the study on countermeasures for reasonable irrigation water development in Korea in the future, through the investigation for the structural characteristics of reservoirs and their change trend by an epoch. During this study 123 sites of sample reservoirs were analysed in their dimensions of physical constituent factors. The physical characteristics and their change trends revealed by this study are summarized as follows: 1. For the irrigation earth dam in Korea the correlation between dam volume (v) and dam height & length (H$^2$L) can be described as the formula of v=1. 434H2L~17, 300 (r=0. 933), from which embankment amount is assumed to be quickly estimated under determined dam height and length of the proposed reservoir. 2. The ratio of dam volume to dam height & length ranges approximately from 0.5 to 3 (1.7 in average), that of storage capacity to dam volume 2 to 10 (8.4 in average), that of irrigation area to full water surface area 5 to 20 (13 in average) and that of catchment area to irrigation area 2 to 5 (4 in average). Though correlation between dam volume and dam height & length is high, that between others is relatively low. 3. Average storage depth ranges approximately from 4m to l0m (6.6m in average), unit storage capacity 0. 4m to 0. 8m (0.54 in average) and shape factor of dam 5 to 20 (10.5 in average). 4. The more recently planned the reservoirs were, the less storage capacity, dam volume, full water surface and dam shape factor they have. 5. The more recently planned the reservoirs were, the larger storage depth and unit storage capacity they have.

  • PDF