• Title/Summary/Keyword: Catalytic thermal decomposition

Search Result 83, Processing Time 0.033 seconds

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

Preparation of Carbon Nanofibers by Catalytic CVD and Their Purification

  • Lim, Jae-Seok;Lee, Seong-Young;Park, Sei-Min;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • The carbon nanofibers (CNFs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. The CNFs prepared from $C_3H_8$ at $550^{\circ}C$ was selected as the purification sample due to the higher content of impurity than that prepared from other conditions. In this study, we carried out the purification of CNFs by oxidation in air or carbon dioxide after acid treatment, and investigated the influence of purification parameters such as kind of acid, concentration, oxidation time, and oxidation temperature on the structure of CNFs. The metal catalysts could be easily eliminated from the prepared CNFs by liquid phase purification with various acids and it was verified by ICP analysis, in which, for example, Ni content decreased from 2.51% to 0.18% with 8% nitric acid. However, the particulate carbon and heterogeneous fibers were not removed from the prepared CNFs by thermal oxidation in air and carbon dioxide. This result can be explained by that the direction of graphene sheet in CNFs is vertical to the fiber axis and the CNFs are oxidized at about the similar rate with the impurity carbon.

  • PDF

Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand

  • Maldhure, A. K.;Pethe, G. B.;Yaul, A. R.;Aswar, A. S.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.215-224
    • /
    • 2015
  • Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

Field Emission Characteristics of Double-walled Carbon Nanotubes Related with Hydrochloric Acid Treatment (이중벽 탄소나노튜브의 염산처리 시간에 따른 전계방출 특성 평가)

  • Jung, Da-Mi;Sok, Jung-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • High-quality double-walled carbon nanotubes (DWCNTs) were synthesized by catalytic decomposition method at $800^{\circ}C$ using Tetrahydrofuran. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by two-step purification process, consisting of thermal oxidation and H2O2, HNO3, HCl treatment. The DWCNT suspension was prepared by dispersing the purified DWCNTs in an aqueous sodium dodecylbenzenesulfonate solution with horn-type sonication. This was then sprayed on ITO glass to fabricate CNT field emitters. The quality of purified DWCNTs was estimated with X-ray diffraction and Thermal Gravity Analysis. The field emission properties were improved by increasing the process time of HCl treatment.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide (온실가스 아산화질소(N2O) 저감기술 및 CDM 사업의 현황과 전망)

  • Chang, Kil Sang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • With the effectuation of Kyoto Protocol on the United Nations Framework Convention on the Climate Change, the emission reduction of greenhouse gases became an urgent issue and has been competitively secured among countries as the form of certificates through clean development mechanism (CDM) or joint implementation (JI). Nitrous oxide ($N_2O$) is one of the major greenhouse gases along with carbon dioxide ($CO_2$) and methane ($CH_4$) having warming potential 310 times that of carbon dioxide and chemically very stable in the atmosphere to give a life time of more than 120 years so that it reaches to the stratosphere to act as an ozone depleting substance. $N_2O$ hardly decomposes and thus, besides to the adoption of thermal decomposition at high temperature, selective catalytic reduction methods are usually used at temperatures over $400^{\circ}C$ in which the presence of NOx acts as a major impeding material in the decomposition process. In this article, the sources of various $N_2O$ generation, catalytic reduction processes and the status and trends of emission trade with CDM projects for greenhouse gas reduction are summarized and discussed on a condensed basis.

Synthesis, Characterization, and Application of Zr,S Co-doped TiO2 as Visible-light Active Photocatalyst

  • Kim, Sun-Woo;Khan, Romana;Kim, Tae-Jeong;Kim, Wha-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1217-1223
    • /
    • 2008
  • A series of Zr,S co-doped $TiO_2$ were synthesized by a modified sol-gel method and characterized by various spectroscopic and analytical techniques. The presence of sulfur caused a red-shift in the absorption band of $TiO_2$. Co-doping of sulfur and zirconium (Zr-$TiO_2$-S) improves the surface properties such as surface area, pore volume, and pore diameter and also enhances the thermal stability of the anatase phase. The Zr-$TiO_2$-S systems are very effective visible-light active catalysts for the degradation of toluene. All reactions follow pseudo firstorder kinetics with the decomposition rate reaching as high as 77% within 4 h. The catalytic activity decreases in the following order: Zr-$TiO_2$-S >$TiO_2$-S >Zr-$TiO_2$>$TiO_2$$\approx$ P-25, demonstrating the synergic effect of codoping with zirconium and sulfur. When the comparison is made within the series of Zr-$TiO_2$-S, the catalytic performance is found to be a function of Zr-contents as follows: 3 wt % Zr-TiO2-S >0.5 wt % Zr-$TiO_2$-S> 5 wt % Zr-$TiO_2$-S >1 wt % Zr-$TiO_2$-S. Higher calcination temperature decreases the reactivity of Zr-$TiO_2$-S.

Analysis of Catalytic Cracking and Steam Reforming Technologies for Improving Endothermic Reaction Performance of Hydrocarbon Aviation Fuels (탄화수소 항공유의 흡열반응 성능향상을 위한 촉매 분해 및 수증기 개질 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.98-109
    • /
    • 2021
  • Fundamental parameters describing overall operational characteristics of active cooling systems of a hypersonic flight vehicle are mainly classified into endothermic hydrocarbon fuels, regenerative cooling channels, and materials and system structures. Of primary importance is the improvement of endothermic performance of hydrocarbon aviation fuels in a series of studies developing efficient regenerative cooling systems. In a previous study, therefore, an extensive technical analysis has been carried out on thermal decomposition characteristics of liquid hydrocarbon fuels. As a subsequent study, catalytic cracking and steam reforming technologies have been reviewed to find a way for the improvement of endothermic reaction performance of hydrocarbon aviation fuels.

A Technical Review of Endothermic Fuel Use on Supersonic Flight (고속비행체에서 흡열연료의 이용기술 동향)

  • Kim, Joong-Yeon;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • Advances in high speed flight technologies and engine efficiencies increase heat load on the aircraft. As the temperature of air flow is too high to cool the structure at hypersonic flight speeds, it is necessary to utilize the aircraft fuel as the primary coolant. By undergoing endothermic reaction, such as thermal decomposition or catalytic decomposition, aircraft fuels have heat sink potential. These fuels are called endothermic fuels. The endothermic reaction can be improved by catalysts, but limited by coke deposition. In this study the essential technologies of endothermic fuels are described, and intended to be used for basic research.

  • PDF