• Title/Summary/Keyword: Catalytic pyrolysis

Search Result 81, Processing Time 0.023 seconds

Kinetic Analysis for the Catalytic Pyrolysis of Polyethylene Terephthalate Over Cost Effective Natural Catalysts

  • Pyo, Sumin;Hakimian, Hanie;Kim, Young-Min;Yoo, Kyung-Seun;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.706-710
    • /
    • 2021
  • In the current research, thermal and catalytic thermogravimetric (TG) analysis of polyethylene terephthalate (PET) over natural zeolite (NZ), olivine, bentonite, HZSM-5, and HAl-MCM-41 were investigated using a TG analyzer and model-free kinetic analysis. Catalytic TG analysis of PET was carried out at multi-heating rates, 10, 20, 30, and 40 ℃/min, under nitrogen atmosphere. Apparent activation energy (Ea) values for the thermal and catalytic pyrolysis of PET were calculated using Flynn-Wall-Ozawa method. Although natural catalysts, NZ, olivine, and bentonite, could not lead the higher PET decomposition efficiency than synthetic zeolites, HZSM-5 and HAl-MCM-41, maximum decomposition temperatures on the differential TG (DTG) curves for the catalytic pyrolysis of PET, 436 ℃ over olivine, 435 ℃ over bentonite, and 434 ℃ over NZ, at 10 ℃/min, were definitely lower than non-catalytic pyrolysis. Calculated Ea values for the catalytic pyrolysis of PET over natural catalysts, 177 kJ/mol over olivine, 168 kJ/mol over bentonite, and 171 kJ/mol over NZ, were also not lower than those over synthetic zeolites, however, those were also much lower than the thermal decomposition, suggesting their feasibility as the proper and cost-effective catalysts on the pyrolysis of PET.

Catalytic Pyrolysis of Cellulose over SAPO-11 Using Py-GC/MS

  • Lee, In-Gu;Jun, Bo Ram;Kang, Hyeon Koo;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Ko, Chang Hyun;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2399-2402
    • /
    • 2013
  • The catalytic pyrolysis of cellulose was carried out over SAPO-11 for the first time. Pyrolyzer-gas chromatography/mass spectroscopy was used for the in-situ analysis of the pyrolysis products. The acid sites of SAPO-11 converted most levoglucosan produced from the non-catalytic pyrolysis of cellulose to furans. In particular, the selectivity toward light furans, such as furfural, furan and 2-methyl furan, was high. When the catalyst/cellulose ratio was increased from 1/1 to 3/1 and 5/1, the increase in the quantity of acid sites led to the promotion of deoxygenation and the resultant increase of the contents of light furan compounds. Because furans can be used as basic feedstock materials, the augmentation of the economical value of bio-oil through the catalytic upgrading over SAPO-11 is considerable.

A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste (혼합폐플라스틱 열분해 왁스오일의 고급화 연구)

  • Lee, Kyong-Hwan;Nam, Ki-Yun;Song, Kwang-Sup;Kim, Geug-Tae;Choi, Jeong-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak (굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향)

  • Lee, Ji Young;Lee, Hyung Won;Kim, Young-Min;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.350-355
    • /
    • 2018
  • In this study, the effect of biomass torrefaction on the thermal and catalytic pyrolysis of cork oak was investigated. The thermal and catalytic pyrolysis behavior of cork oak (CO) and torrefied CO (TCO) were evaluated by comparing their thermogravimetric (TG) analysis results and product distributions of bio-oils obtained from the fast pyrolysis using a fixed bed reactor. TG and differential TG (DTG) curves of CO and TCO revealed that the elimination amount of hemicellulose in CO increased by applying the higher torrefaction temperature and longer torrefaction time. CO torrefaction also decreased the oil yield but increased that of solid char during the pyrolysis because the contents of cellulose and lignin in CO increased due to the elimination of hemicellulose during torrefaction. Selectivities of the levoglucosan and phenolics in TCO pyrolysis oil were higher than those in CO pyrolysis oil. The content of aromatic hydrocarbons in bio-oil increased by applying the catalytic pyrolysis of CO and TCO over HZSM-5 ($SiO_2/Al_2O_3=30$). Compared to CO, TCO showed the higher efficiency on the formation of aromatic hydrocarbons via the catalytic pyrolysis over HZSM-5 and the efficiency was maximized by applying the higher torrefaction and catalytic pyrolysis reaction temperatures of 280 and $600^{\circ}C$, respectively.

Catalytic Upgrading of Geodae-Uksae 1 over Mesoporous MCM-48 Catalysts

  • Jeon, Ki-Joon;Jin, Sung Ho;Park, Sung Hoon;Jeon, Jong-Ki;Jung, Sang-Chul;Ryu, Changkook;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1951-1955
    • /
    • 2014
  • Catalytic pyrolysis of Geodae-Uksae 1, a kind of miscanthus found in Korea, was carried out over mesoporous MCM-48 catalysts. For rapid product analysis and catalyst evaluation, pyrolysis-gas chromatography/mass spectrometry was used. X-ray diffraction, nitrogen sorption, pyridine adsorbed Fourier transform infrared, and NH3 temperature programmed desorption were utilized to analyze the properties of the catalysts. Compared to non-catalytic reaction, catalytic upgrading over mesoporous Al-MCM-48 catalysts produced a higher-quality bio-oil with a high stability and low oxygen content. Al-MCM-48 exhibited higher deoxygenation ability than Si-MCM-48 due to its higher acidity.

Catalytic Pyrolysis of Miscanthus and Random Polypropylene over SAPO-11 (SAPO-11을 이용한 억새와 Random Polypropylene의 촉매 열분해)

  • Kang, Hyeon Koo;Yu, Mi Jin;Park, Sung Hoon;Jeon, Jong-Ki;Kim, Sang-Chai;Park, Young-Kwon
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.379-386
    • /
    • 2013
  • SAPO-11 was applied for the first time to the catalytic pyrolysis of miscanthus and random polypropylene (random PP). Thermogravimetric analysis confirmed that SAPO-11 promoted the dehydration of miscanthus while suppressing the formation of char. In the pyrolysis of random PP, the decomposition temperature and activation energy were reduced by using a catalyst. A large fraction of levoglucosan, which was the main oxygenate product from the non-catalytic pyrolysis of miscanthus, was converted to high value-added products, such as furans, phenolics and aromatics using SAPO-34. The catalytic pyrolysis of random PP produced gasoline- and diesel-range hydrocarbons.

Studies on the Catalytic Pyrolysis Products of Hardwood (활엽수재(闊葉樹材)의 촉매적(触媒的) 열분해(熱分解) 생성물(生成物)에 관한 연구(硏究))

  • Min, Du Sik;Lee, Jong Goun
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.12-23
    • /
    • 1984
  • This study was carried out to investigate on the catalytic pyrolysis products of hardwood (Alnus hirsuta (Spach) Rupr. Quercus acutissima Carruters, Robinia pseudoacacia L., and Populus tomentaglandulosa T. Lee) and comparing the rate of catalytic pyrolysis from untreated wood (ordinary wood) with that of treated wood with catalizer (Ammonium phosphate, Ammonium sulfate, Ammonium chloride and Urea). The results were summerized as follows; 1) It is the Populus tomentiglandulosa T. Lee that the species has the most content of holocellulose and pentosan. And Populus tomentiglandulosa exhibited high yield of the distillate in pyrolysis products by Ammonium phosphate with catalizer. 2) The distillate of pyrolysis products is decreased in accordance with increasing catalytic concentration. And untreated wood (ordinary wood) with catalizer has the most distillate of pyrolysis products. 3) The yield of charcoal in pyrolysis products is increased in accordance with increasing catalytic concentration and lignin content of species. 4) The caloric values of charcoal in pyrolysis products is decreased with increasing catalytic concentration. And untreated wood (ordinary wood) with catalizer had the most caloric values, but the caloric values of charcoal did not show statistically significent difference at 5% levels in catalizer.

  • PDF

Effects of Reaction Conditions on the Performance of Catalytic Pyrolysis of LDPE in a Semi-Batch Reactor (LDPE 반회분식 촉매열분해에서 조업조건이 반응 특성에 미치는 영향)

  • Na, Jeong-Geol;Leem, Chel-Hyen;Choi, Hwi-Kyoung;Chung, Soo-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.79-82
    • /
    • 2006
  • Fueled by ballooning oil prices, waste plastics are now regarded as being cheap and abundant renewable sources, removing their stigma of dirty wastes Catalytic pryolysis of plastics in liquid phase allows recovery of light fuel oil as well as green treatment of polymerics wastes, and therefore significant efforts have been devoted to this research field. In this study, catalytic Pyrolysis of LDPE was carl ied out in semi-batch reactor which equipped a unit of separation and recirculation. The effect of react ion conditions were examined by analyzing liquid oil yield and carbon number distribution of products

  • PDF

Emulsification of the Mixture of Catalytic Pyrolysis Oil Obtained under Methane and Nitrogen Environment in Diesel Using Span 80 and Atlox 4916 as Surfactants

  • Farooq, Abid;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.357-360
    • /
    • 2021
  • Emulsions were prepared using a mixture of bio-oil obtained from the pyrolysis of sawdust in an N2 environment and Quercus mongolica in a CH4 environment for both non-catalytic and catalytic cases. Both prepared emulsions were examined by measuring the physical stability and Fourier transform infrared spectroscopy. The emulsion with HLB 5.8 (Span 80 and Atlox 4916) for the ratio of bio-oil (B-oil and C-oil): surfactant: diesel = 10% : 3% : 87% showed stability for 15 days. Combining oils produced in N2 and CH4 environments could be a potential solution for generating high-quality emulsions with a high heating value.