• Title/Summary/Keyword: Catalytic metal

Search Result 626, Processing Time 0.032 seconds

Synthesis and Microstructure of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition Method (촉매화학기상증착법에 의한 단일벽 탄소나노튜브의 합성과 미세구조)

  • Kim, Jong-Sik;Kim, Gwan-Ha;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.359-363
    • /
    • 2006
  • Single-walled carbon nanotubes (SWCNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of methane in $H_2$ over well-dispersed metal particles supported on MgO. The yield of SWCNTs was estimated to be 88.5% and the purities of SWCNTs thus obtained were more than 90%. Peak of the radial breathing mode in the Raman spectrum demonstrated that the diameters of synthesized CNTs are in the range 0.4-2.0 nm. Our results also indicated that MgO support materials are useful to a large-scale synthesis of high-quality SWCNTs. Increasing temperature could remarkably increase the yield and also improve the quality of SWCNTs from catalytic decomposition of methane. The morphologies and microstructures of the synthesized carbon materials were characterized by scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction (XRD).

Efficient Hydrogenation Catalysts of Ni or Pd on Nanoporous Carbon Workable in an Acidic Condition

  • Lee, Dong-Hwan;Kim, Hong-Gon;Kang, Min;Kim, Ji-Man;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2034-2040
    • /
    • 2007
  • Efficient catalytic systems, where Ni or Pd is introduced in a supporting material of nanoporous carbon, have been developed for a liquid-phase hydrogenation of carboxylic acids and ketones at room temperature. It has been found that the catalysts reliably show high activities and selectivities for the hydrogenation to alcohols even in acidic conditions, and the catalytic activities depend on the preparative method of catalysts, the hydrogen pressure, the agitation rate, and the catalytic species. The hydrogenation of carboxylic acids and ketones clearly shows that the reaction rate is affected by the electronic and the steric effects, and a plausible reaction mechanism using metal hydrides as catalytic species is proposed.

Catalytic Activities of Pd(II), Pd(I) and Pd(O)-diphosphine Complexes for Styrene Oxidation

  • Jo, Yeong Je;Kim, Gyeong Chae;Jeong, Jong Hwa;Park, Yu Cheol;Do, Myeong Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.211-214
    • /
    • 1995
  • The catalytic activities of palladium(0,Ⅰ,Ⅱ)-diphosphine complexes were investigated in styrene oxidation using H2O2 as terminal oxidant. The rates showed a dependence on the chelate ring patterns of complexes (PdCl2L); 5-membered ring (L=dppe: 1,2-bis(diphenylphosphino)ethane) < 6-membered ring (L=dppp: 1,3-bis(diphenylphosphino)propane) < 4-membered ring (L= dppm: bis(diphenylphosphino)methane). This sequence correlates with the ligand field strength and interactions between metal and phosphine ligands. Pd(Ⅱ,Ⅰ)-diphosphine complexes which are capable of making 4-membered chelate ring showed an enhancement of catalytic activities for styrene oxidation. The catalytic activities of Pd(0,Ⅰ,Ⅱ)-diphosphine complexes are described in terms of electronic and steric factors.

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Dehydropolycondensation of Aminophenols under the Catalytic Action of Metallic Chelate Compounds (II) Effects of the Ligands, Structures of the Mixed Complexes, and Side Reactions (金屬킬레이트 化合物의 觸媒作用에 依한 Aminophenol 類의 酸化的 重縮合反應 (Ⅱ) Ligands 種의 效果, 混合錯物의 構造및 副反應)

  • Choi, Kyu-Suck
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.121-127
    • /
    • 1968
  • In the oligomerization of p-aminophenol under the catalytic action of the metallic complexes, the effects of the ligands are studied. When the initial velocity of $O_2$ uptake at pH 8 using Fe(Ⅲ) as the central metal and N-hydroxylethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), 1,2-cyclohexanediaminetetraacetic acid(CyDTA) as the ligands respectively are compared, the velocities are as the following order: HEDTA > EDTA > DTPA > CyDTA. Further when the effect of the ligands, nitrilotriacetic acid (NTA), HEDTA, EDTA, and DTPA, on the yields of oligomers are compared, the result shows as the following order: NTA > HEDTA > EDTA > DTPA. These are nearly reverse order of the stability constants of the complexes. In order to determine the composition of the mixed complexes at the initial step, the method of continuous variation is used, and it is found that the composition ratio of Fe-EDTA complex to monomer in the mixed complexes is one at pH 5-8 range. It is also found that at pH 9 or in the more alkaline range, side reactions occur to form water soluble dimer of quinone type and the catalytic action of the metallic complex markedly decreases on account of the hydrolysis of the central metal by the $OH^-$ ion.

  • PDF

Preparation of Graphene Based PdOx and CuOx/MnOx Nanocomposites and Their Catalytic Applications in C-C Coupling and CH3SH Decomposition Reactions

  • Lee, Gyeong-Hun;Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.175.2-175.2
    • /
    • 2014
  • Graphene (G) has been modified with palladium, copper, and manganese oxide nanoparticles (NPs), and their catalytic applications have been studied in C-C coupling reactions and methylmercaptan (CH3SH) decomposition reactions. In this research, graphite oxide (GO) sheets were exfoliated and oxidized from graphite powder and impregnated with metal precursors including Pd2+, Cu2+, and Mn2+. The thermal treatments of the metal impregnated GO in preferred gas environments produced Pd NPs on graphene (Pd/G), PdO NPs on GO (PdO/GO), and CuOx and MnOx NPs on graphene (CuOx/MnOx/G). In case of Pd/G and PdO/GO, the TEM images show that, although the mean size of the Pd NPs changed significantly before and after the C-C coupling reaction, that of the PdO NPs didn't, implying that the PdO/GO was superior to Pd/G in terms of the recyclability. Also, we demonstrate that the CuOx/MnOx/G exerts the excellent catalytic efficiency in CH3SH decomposition reaction comparing with conventional catalysts. The chemical and electronic structural changes were investigated using XRD and XPS.

  • PDF

$CO_2$ reforming using $TiO_2$/Ni catalysts prepared by atomic layer deposition

  • Kim, Dong-Wun;Kim, Kwang-Dae;Seo, Hyun-Ook;Dey, Nilay Kumar;Kim, Myoung-Joo;Kim, Young-Dok;Lim, Dong-Chan;Lee, Kyu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.443-443
    • /
    • 2011
  • Atomic layer deposition (ALD) was used to deposit $TiO_2$ on Ni particles, and changes in the catalytic activity of Ni for $CO_2$ reforming of methane (CRM) were studied. In the presence of $TiO_2$ islands on Ni surfaces, the onset temperature of the CRM reaction was lower than that of bare Ni. During the CRM reaction, carbon was deposited on the surface, reducing the catalytic activity of the surface, but $TiO_2$ was able to remove the carbon deposits from the surface. When the Ni surface was completely covered with $TiO_2$, catalytic activity disappeared, indicating that tuning of $TiO_2$ coverage on Ni is important for maximizing the activity of the CRM reaction.

  • PDF

Long-term stabilized metal oxide-doped SnO2 sensors

  • Park, Mi-Ok;Choi, Soon-Don;Min, Bong-Ki;Lim, Jun-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.295-302
    • /
    • 2008
  • $TiO_2,\;ZrO_2$, and $SiO_2$ were added in the concentration of 1 - 3 wt.% to improve long-term stability for the $SnO2$ thick film gas sensor. Short-term sensor resistances up to 90 h were measured to investigate the stabilization time of initial resistance in air. Long-term resistance drifts in air and in gas to 5000 ppm methane for the sensors annealed at $750^{\circ}C$ for 1 h and continuously heated at an operating temperature of $400^{\circ}C$ were also measured up to 90 days at an interval of 1 day. The long-term drifts in methane sensitivity for the three metal oxide-doped $SnO2$ sensors are closely related to methane sensitivity level, catalytic activity, and long-term drift in sensor resistance in air. Those stabilities are mainly discussed in terms of oxidation state and catalytic activity.

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.