DOI QR코드

DOI QR Code

Long-term stabilized metal oxide-doped SnO2 sensors

  • 박미옥 (영남대학교 금속공학과) ;
  • 최순돈 (영남대학교 금속공학과) ;
  • 민봉기 (영남대학교 중앙기기 센터) ;
  • 임준우 (경남정보대학 전자정보공학과)
  • Park, Mi-Ok (School of Metallurgical and Materials Engineering, Yeungnam University) ;
  • Choi, Soon-Don (School of Metallurgical and Materials Engineering, Yeungnam University) ;
  • Min, Bong-Ki (Instrumental Analysis Center, Yeungnam University) ;
  • Lim, Jun-Woo (Subdivision of Electronic Information, Kyungnam College of Information & Technology)
  • 발행 : 2008.07.31

초록

$TiO_2,\;ZrO_2$, and $SiO_2$ were added in the concentration of 1 - 3 wt.% to improve long-term stability for the $SnO2$ thick film gas sensor. Short-term sensor resistances up to 90 h were measured to investigate the stabilization time of initial resistance in air. Long-term resistance drifts in air and in gas to 5000 ppm methane for the sensors annealed at $750^{\circ}C$ for 1 h and continuously heated at an operating temperature of $400^{\circ}C$ were also measured up to 90 days at an interval of 1 day. The long-term drifts in methane sensitivity for the three metal oxide-doped $SnO2$ sensors are closely related to methane sensitivity level, catalytic activity, and long-term drift in sensor resistance in air. Those stabilities are mainly discussed in terms of oxidation state and catalytic activity.

키워드

참고문헌

  1. G.S. V. Coles and K. J. Gallagher, 'Fabrication and preliminary tests on tin(IV) oxide-based gas sensors', Sensors and Actuators, 7, pp. 89-96, 1985 https://doi.org/10.1016/0250-6874(85)85011-3
  2. N. K. Choi and D. D. Lee, 'Thin film gas sensors based on tin oxide for acetonitrile', J. Kor. Sensors Soc., vol. 13, no. 3, pp. 218-223, 2004 https://doi.org/10.5369/JSST.2004.13.3.218
  3. K. H. Yun and J. S. Huh, 'Gas sensing characteristics of thin film SnO2 sensors with different pretreatments', J. Kor. Sensors Soc., vol. 15, no. 5, pp. 309-316, 2006 https://doi.org/10.5369/JSST.2006.15.5.309
  4. K. Ihokura and J. Watson, 'The stannic oxide gas sensor - principles and applications', CRC Press, Ann Arbor, USA, pp. 147-158, 1994
  5. J. Watson, 'The tin oxide gas sensor and its applications', Sensors and Actuators, 5, pp. 29-42, 1984 https://doi.org/10.1016/0250-6874(84)87004-3
  6. K. Takahata, 'Tin oxide sensors - development and application', Chemical Sensor Technology, edited by T. Seiyama, Elsevier Amsterdam-Oxford-New York-Tokyo, vol. 1, pp. 39-55, 1988
  7. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, 'Relationship between gas sensitivity and microstructure of porous $SnO_2$', J. Electrochem. Soc. Jpn., 58 pp. 1143-1148, 1990
  8. N. Yamazoe, 'New approaches for improving semiconductor gas sensor', Sensors and Actuators B, 5, pp. 7-19, 1991 https://doi.org/10.1016/0925-4005(91)80213-4
  9. S. D. Choi and D. D. Lee, 'CH4 sensing characteristics of K-, Ca-, Mg- impregnated $SnO_2$ sensors', Sensors and Actuators B, 77, pp. 29-42, 1984
  10. Y. Nakamura, S. Yasunaga, N. Yamazoe, and T. Seiyama, Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux, pp. 164-166, 1986
  11. Y. Matsuura, K. Takahata, and K. Ihokura, Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux, pp. 197-200, 1986
  12. M. Matsuura, K. Takahara, and K. Ihokura, 'Mechanism of gas sensitivity change with time of $SnO_2$ gas sensor', Sensors and Actuators, 14, pp. 223- 232, 1988 https://doi.org/10.1016/0250-6874(88)80069-6
  13. M. Matsuura and K. Takahara, 'Stabilization of SnO2 gas sensor', Technical Digest of the 9th Sensor Symposium, pp. 91-94, 1990
  14. B-K Min and S-D Choi, '$SnO_2$ thin film gas sensor fabricated by ion beam deposition', Sensors and Actuators B, 98, pp. 239-246, 2004 https://doi.org/10.1016/j.snb.2003.10.023
  15. B-K Min and S-D Choi, 'Undoped and 0.1 wt.% Ca-doped Pt-catalyzed $SnO_2$ sensors for $CH_4$ detection', Sensors and Actuators B, 108, pp. 119-124, 2005 https://doi.org/10.1016/j.snb.2004.12.112
  16. K. Ihokura and J. Watson, 'The stannic oxide gas sensor - principles and applications', CRC Press, Ann Arbor, USA, pp. 82-83, 1994
  17. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, 'Grain size effects on gas sensitivity of porous $SnO_2$-based elements', Sensors and Actuators B, 3, pp. 147-155, 1991 https://doi.org/10.1016/0925-4005(91)80207-Z
  18. Duk-Dong Lee, 'Hydrocarbon gas sensors', Chemical Sensor Technology edited by M. Aizawa, Kodansha Tokyo, vol. 5, pp. 79-99, 1994
  19. N. Yamazoe, J. Fuchigami, and M. Kishikawa, 'Interactions of tin oxide surface with $O_2$, $H_2O$ and $H_2$', Surface Science, 86, pp. 335-344, 1979 https://doi.org/10.1016/0039-6028(79)90411-4
  20. A. F. Carroll and L. H. Slack, 'Effect of addition to $SnO_2$ thin films', J. Electrochem. Soc., vol. 123, no. 12, pp. 1889-1893, 1976 https://doi.org/10.1149/1.2132718
  21. S. R. Morrison, 'Semiconductor gas sensors', Sensors and Actuators, 2, pp. 329-341, 1982 https://doi.org/10.1016/0250-6874(81)80054-6
  22. I. Barin, 'Thermochemical data of pure substances', Part II, VCH, pp. 1359-1734, 1989
  23. K. Ihokura and J. Watson, 'The stannic oxide gas sensor - principles and applications', CRC Press Ann Arbor, USA, pp. 72-89, 1994
  24. F. Brescia, S. Mehman, F. C. Pellegrini, and S. Stambler, 'Chemistry-a modern introduction', W. B. Saunders Com., Philadelphia, USA, pp. 188-205, 1974
  25. T. Yamamoto and K. Murakami, 'Humidity sensor using $TiO_2-SnO_2$ ceramics', Chemical Sensor Technology, edited by T. Seiyama, Elsevier, Amsterdam- Oxford-New York-Tokyo, vol. 2, pp. 133-150, 1989