• 제목/요약/키워드: Catalytic degradation

검색결과 185건 처리시간 0.024초

기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성 (Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination)

  • 이혜련;임채훈;이란은;이영석
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.632-639
    • /
    • 2021
  • 본 연구에서는 WO3 광촉매의 활성을 증대시키기 위하여 불소 도핑을 수행하고, 메틸렌블루 염료를 이용하여 광분해 특성을 고찰하였다. 본 연구를 통해 제조된 WO3-xFx 광촉매는 WCl6 전구체로부터 WO3 광촉매를 제조하기 위한 소결과정 중에 기상 불소화 방법을 이용하여 제조하였다. 불소 도핑 후 WO3 광촉매의 밴드갭이 2.95 eV에서 2.54 eV로 감소하였고, 산소 결핍 자리 영역이 약 55% 증가하였다. 또한 제조한 광촉매의 초기 염료 분해 성능은 불소 도핑 전과 비교하였을 때 10%에서 60%로 불소 도핑 후 6배 증가하였다. 이는 불소가 도핑되어 광촉매의 밴드갭이 감소하여 적은 에너지로 촉매 활성 반응을 가능하게 하고, 또한 산소 결핍이 생성된 표면 결함이 WO3 광촉매의 가시광선 흡수영역을 증대시켜 광촉매 활성이 증가한 것으로 사료된다. 본 연구에서는 후처리 공정이 불필요한 원스텝 기상 불소화 반응을 이용하여 손쉬운 방법으로 광촉매활성이 뛰어난 불소가 도핑된 WO3-xFx 광촉매를 제조할 수 있음을 확인하였다.

Apoptosis의 외인성 경로에서 caspase-8의 구조적 및 기능적 역할 (Structural and Functional Roles of Caspase-8 in Extrinsic Apoptosis)

  • 하민선;정미숙;장세복
    • 생명과학회지
    • /
    • 제31권10호
    • /
    • pp.954-959
    • /
    • 2021
  • 세포 사멸은 항상성을 유지하기 위해 세포군을 조절하는 중요한 메커니즘이며 시스테인 단백질분해효소 중 하나인 카스파제는 세포 사멸 경로의 중요한 중재자이다. Caspase-8은 세포외 자극에 의해 시작되는 외인성 세포자멸 경로의 개시자 카스파제이다. Caspase-8에는 보존된 도메인인 N-말단의 두개의 죽음 이펙터 도메인(DED)과 C-말단의 2개의 촉매 도메인을 가지며, 이는 이러한 외인성 세포자멸 경로에 중요하게 작용한다. 외인성 세포멸사 경로에서, TNF 슈퍼패밀리인 죽음 수용체는 세포 외부로부터의 죽음 수용체 특이적 리간드의 결합에 의해 활성화된다. 활성화된 죽음 수용체가 어댑터 단백질인 Fas-associated death domain 단백질(FADD)을 모집한 후, 죽음 수용체와 FADD의 죽음 도메인(DD)이 서로 결합하고 죽음 수용체와 결합한 FADD가 caspase-8의 전구체 형태인 procaspase-8을 모집한다. FADD와 procaspase-8의 죽음 이펙터 도메인은 서로 결합하고 FADD에 결합된 procaspase-8은 prodomain의 절단에 의해 활성화된다. 이 죽음 수용체-FADD-caspase-8 복합체는 세포사멸 유도 신호복합체(DISC)라고 한다. 세포 FLICE 억제 단백질(c-FLIPs)은 세포사멸을 억제하는 역할과 촉진하는 역할을 모두 수행하여 caspase-8의 활성화를 조절하고 caspase-8 활성화는 caspase-3와 같은 작동자 카스파제를 활성화를 시킨다. 마지막으로 활성화된 작동자 카스파제는 DNA 분해, 핵 응축, 세포막 수포 및 카스파제 기질의 단백질 분해에 작용하여 세포사멸을 완료한다.

암 치료 표적으로써 유비퀴틴 접합 효소 UBE2의 기능 (The Role of Ubiquitin-conjugating Enzymes as Therapeutic Targets in Cancer)

  • 우선민;권택규
    • 생명과학회지
    • /
    • 제33권6호
    • /
    • pp.523-529
    • /
    • 2023
  • 유비퀴틴-프로테아좀 시스템은 E1-E2-E3 효소의 작용으로 단백질 안정성을 조절하며 이를 통해 진핵 세포 내 광범위한 과정을 조절한다. 특히 DNA 수리, 세포 주기, 전이, 혈관형성 및 사멸과 같은 종양의 생장 과정에서 주요한 역할을 하는데 이 과정에서 유비퀴틴 접합 효소인 UBE2는 활성화된 유비퀴틴을 타깃 단백질에 이동시켜주는 중간 매개체 역할을 한다. UBE2는 인간에게서 40개가 존재하며 이는 촉매 도메인의 확장 유무에 따라 4개의 그룹으로 분류된다. 최근 UBE2의 타깃 단백질의 특정 위치를 인식하는 기질 특이성에 대한 연구가 증가하는 추세이다. 특히 암에서 발현이 높은 UBE2는 암 환자의 나쁜 예후와 상관관계가 있어 종양 형성에서 UBE2의 중요성이 강조되고 있다. 본 총설에서는 암에서 UBE2의 역할에 대한 최신 연구 결과 및 동향에 대해 기술하였다. 또한 UBE2에 관한 기초 지식 및 분자적 메커니즘을 제공함으로써 궁극적으로는 UBE2가 종양 치료의 새로운 타깃이 될 수 있음을 시사한다.

TIR 촉매반응에 의해 생성된 소분자들의 식물면역반응에서의 역할 (TIR-catalyzed Small Molecules: Structure and Function in Plant Immunity)

  • 배성현;박상현;차예림;전다원;임가현
    • 생명과학회지
    • /
    • 제34권9호
    • /
    • pp.666-672
    • /
    • 2024
  • 식물 세포에 존재하는 수용체(receptor)가 외부의 병원체를 인식하면 빠르게 세포 내 신호전달이 시작된다. 식물의 면역 수용체인 NLR단백질(Nucleotide-binding and leucine-rich repeat receptor)은 병원성 분자(effectors)를 특이적으로 인식하여 신호 전달을 활성화시키며, 식물 세포 사멸(cell death)을 포함한 식물 면역반응(effector-triggered immunity)을 유도한다. TNL-의존적 면역 신호전달은 lipase-like proteins로 알려진 EDS1 (Enhanced Disease Susceptibility 1)과 파트너인 PAD4 (Phytoalexin Deficient 4), SAG101 (Senescence-Associated Gene 101)이 관여하며 ADR1 (Activated Disease Resistance 1), NRG1(N requirement gene 1)이 필요하다. TIR 도메인 단백질 촉매 반응은 여러 형태의 소분자를 생성해 내며, 이들은 식물 면역반응의 효과적인 활성을 촉매하는 것으로 보고되었다. 이들은 EDS1-PAD4 및 EDS1-SAG101의 특정 위치에 결합하여 EP도메인의 구조 변화를 유도하며, 그 결과 ADR1 또는 NRG1과의 상호작용이 가능한 것으로 여겨진다. 따라서 소분자들과 단백질 복합체의 안정된 형태에 의하여 식물의 면역 반응이 활성화될 수 있는지 연구하는 것은 중요한 연구 주제이다. 본 논문에서는 이러한 소분자에 대해 알아보고, 이들과 단백질 복합체의 관계를 구조적 및 생화학적 특징에 기반해 기술하고자 한다. 또한, EDS1-PAD4와 EDS1-SAG101복합체의 구조적 차이에 의하여 각각 고유한 역할을 수행하며, 이와 관련된 특정 상호작용을 통해 신호 전달 경로를 활성화하는 방식에 영향을 미칠 수 있는지에 대하여 고찰해 보고자 한다.

이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용 (Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets)

  • 김유림;이슬기;정성엽;이재원;조형태
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.36-43
    • /
    • 2024
  • 폐어망은 해양 플라스틱 폐기물의 50% 이상을 차지하며, 해양생태계를 파괴하는 주요 원인으로 지목되고 있다. 이러한 문제를 해결하기 위해 폐어망은 소각, 매립, 기계적 재활용 등의 방법으로 처리되고 있으나, 부가가치가 낮은 제품으로 재활용되며, 오염 물질을 배출한다는 한계가 존재한다. 하지만 플라스틱 고분자로 구성된 폐어망은 열분해 방법을 통해 처리할 경우, 합성가스 및 열분해유와 같은 유용한 자원으로 재활용할 수 있다. 따라서 본 연구에서는 CO2 기반에서 폐어망을 촉매 열분해하여 고순도의 H2를 생산하는 공정을 제안하였다. 제안된 공정은 다음 3단계로 구성된다. 첫째, 전처리 된 폐어망을 CO2 기반 하 Ni/SiO2 촉매 열분해 반응을 통해 합성가스 및 열분해유를 생산한다. 둘째, 생성된 열분해유를 연소시켜 열분해 반응의 에너지원으로 재사용한다. 마지막으로, 합성가스를 WGS (Water-Gas-Shift) 및 PSA (Pressure Swing Adsorption)를 통해 고순도의 H2로 전환한다. 본 연구에서는 제안된 공정의 열분해 결과를 일반적인 열분해 조건인 기존 N2 기반 열분해 결과와 비교하였다. 시뮬레이션 결과, 폐어망 500 kg/h을 열분해 시 N2 기반에서는 2.933 kmol/h의 고순도 H2를, CO2 기반에서는 3.605 kmol/h 의 고순도 H2를 생산 가능했다. CO2 기반 폐어망 열분해에서 CO 생산이 향상되어 최종적으로 H2 생산량이 증대된 결과가 도출되었다. 또한 폐어망 열분해 시 CO2 기반에서는 공정 운전 과정에서 배출되는 CO2를 포집 후 활용함으로써, N2 기반 열분해에 비해 CO2 배출량을 89.8% 줄일 수 있었다. 연구 결과를 바탕으로 CO2 기반에서의 제안 공정은 폐어망 재활용과 더불어 친환경적인 수소 연료생산이라는 목표를 달성할 수 있을 것으로 기대된다.