• Title/Summary/Keyword: Catalytic combustible sensor

Search Result 9, Processing Time 0.025 seconds

Detecting Characteristics of Catalytic Combustible Gas Sensor (접촉연소식 가스 센서의 검지특성)

  • 박찬원;원창섭;유영한;안형근;한득영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.865-870
    • /
    • 2000
  • In this paper, catalytic combustible gas sensor was fabricated and tested under flammable gases such as CH$_4$and $C_4$H$_{10}$by using Pt coil as a heater and/or temperature sensing element. Fine $Al_2$O$_3$powder was used for a bead and Pt, Pd noble metal powder for a catalyst. Resistance variation of Pt wire was traced by the changes of the gas concentrations in a chamber. Output voltage was then monitored to obtain the gas concentration from the resistance variation. In this experiment, MgO was used to protect cracks in the based and TiO$_2$to increase the sensitivity of the sensors. Water glass was also added to enhance the selectivity to the combustible gases.s.

  • PDF

Characteristics of Catalytic Combustible Gas Sensor Based on Planar Technology (평탄형 접촉 연소식 가스 센서의 특성)

  • Kim, Yeong-Bok;Noh, Hyo-Sub;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.812-817
    • /
    • 2008
  • A catalytic combustible sensor for LPG/LNG detection was fabricated on $Al_2O_3$ substrate using planar technology. The catalysts of Pd and Pt were added to ${\alpha}$- and ${\gamma}-Al_2O_3$ powders. The mixture of Pt, Pd and $Al_2O_3$ were homogenized by using a three roll mixer. TCR characteristics of Pt heater were optimized with the heat treatment temperature. Sensing properties were investigated as a function of the microstructure of $Al_2O_3$, the gas concentration and the variation of input voltage. ${\alpha}-Al_2O_3$ sintered at 500 $^{\circ}C$ is more suitable as LPG/LNG sensor due to good grain shape and size distribution of about 300 nm than that of ${\gamma}-Al_2O_3$ which is in irregular shape and with a particle size of 5-30 ${\mu}m$. The sensor has shown maximum output voltage of 14 mV for 1000 ppm $C_4H_{10}$ and 3.8 mV for 1000 ppm $CH_4$ at 5.0 V input voltage.

Improved hydrogen sensing characteristics of flat type catalytic combustible hydrogen gas sensor of micro-structure (평판형 접촉연소식 마이크로 수소센서의 감지특성 향상)

  • Kim, Chan-Woo;Gwak, Ji-Hye;Chun, Il-Su;Han, Sang-Do;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.202-206
    • /
    • 2009
  • Flat type catalytic combustible hydrogen sensors were fabricated using platinum micro-heaters and sensing material pastes. The platinum micro-heater was formed on an alumina substrate by sputtering method. The paste for the sensing materials was prepared using ${\gamma}-Al_2O_3$ 30 wt%, $SnO_2$ 35 wt%, and Pd/Pt 30 wt% and coated on the platinum micro-heater. The sensing performances were tested for the prepared sensors with different substrate sizes. The micro catalytic combustible hydrogen sensors showed quick response time, high reliability, and good selectivity against various gases(CO, $C_3H_8,\;CH_4$) at low operating temperature of $156^{\circ}\C$.

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Electrical modelling for thermal behavior and gas response of combustible catalytic sensor (접촉연소식 센서의 열 특성 및 가스반응의 모델링)

  • Lee, Sang-Mun;Song, Kap-Duk;Joo, Byung-Su;Lee, Yun-Su;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • This study provides the electrical model of combustible catalytic gas sensor. Physical characteristics such as thermal behavior, resistance change were included in this model. The finite element method analysis for sensor device structure showed that the thermal behavior of sensor is expressed in a simple electrical equivalent circuit that consists of a resistor, a capacitor and a current source. This thermal equivalent circuit interfaces with real electrical circuit using two parts. One is 'power to heat' converter. The other is temperature dependent variable resistor. These parts realized with the analog behavior devices of the SPICE library. The gas response tendency was represented from the mass transferring limitation theory and the combustion theory. In this model, Gas concentration that is expressed in voltage at the model, is converted to heat and is flowed to the thermal equivalent circuit. This model is tested in several circuit simulations. The resistance change of device, the delay time due to thermal capacity, the gas responses output voltage that are calculated from SPICE simulations correspond well to real results from measuring in electrical circuits. Also good simulation result can be produced in the more complicated circuit that includes amplifier, bios circiut, buffer part.

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.229-235
    • /
    • 1997
  • A low power (300 mW) catalytic bead combustible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 MJ/$m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas has a slightly different curve of sensitivity vs. sensor temperature. Thus there Is no temperature at which all sensitivities are equal. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Fabrication of catalytic combustible gas sensor for hydrocarbon gas detection (탄화수소계 가스 감지용 접촉연소식 가스센서의 제조)

  • Park, Hyo-Derk;Lee, Jae-Suk;Kim, Kun-Nyun;Park, Jong-Wan;Shin, Sang-Mo
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 1994
  • Catalytic combustible gas sensors were fabricated by using ${\gamma}-Al_{2}O_{3}$ with large surface area and noble metal catalysts. The optimum conditions for ${\gamma}-Al_{2}O_{3}$ fabrication were investigated by DT/TGA and XRD analyses and it was found that fabricated ${\gamma}-Al_{2}O_{3}$ had superior value as surface area of $215.5m^{2}/g$. Gas sensors were manufactured and tested to inflammable gases by using Pt coil as a heater and temperature sensing part, fine ${\gamma}-Al_{2}O_{3}$ powder as a bead material and Pt, Pd noble metal powder as a catalyst. From the results, fabricated sensor showed good sensitivity to LPG and LNG of 20mV/l000ppm, 6.5mV/l000ppm respectively.

  • PDF

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • A low power (below than 300 mW) catalytic bead combusible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 $MJ/m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas represents a slightly different curve of sensitivity to sensor temperature. Thus all of the sensitivities are not equal to every temperature. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Fabrication of thick film type catalytic combustible gas sensor using parallel resistance heat source (병열형가열부를 이용한 후막형 접촉연소식 가스센서 제조)

  • Park, Jun-Sik;Lee, Jae-Suk;Hong, Sung-Jei;Park, Hyo-Derk;Shin, Sang-Mo
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • Thick film type gas sensors with parallel Pt heaters were fabricated by screen printing process and investigated sensitivities for methane gas. The TR7905 was selected as Pt paste for heater by characterization the properties of TCRs and thick film microstructures. The average resistance of parallel Pt heaters was $1.8{\Omega}$, and the best TCR obtained was $3685\;ppm/^{\circ}C$. On the top of the Pt heaters, a sensing layer added with Pt and Pd as catalyst paste was screen printed and heat treated. The sensitivity of the sensor was 4.3mV/1000ppm for methane. The power consumption of the sensors was 2.12watts.

  • PDF