• Title/Summary/Keyword: Catalytic Surface Reaction

Search Result 378, Processing Time 0.026 seconds

Catalytic Incineration Kinetics of Gaseous MEK and Toluene (MEK와 톨루엔의 촉매연소 속도특성)

  • 이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.113-119
    • /
    • 1999
  • In this study, the incineration of MEK and toluene was studied on a Pt supported alumina catalyst at temperature range from 200 to $350^{\circ}C$. An approach based on the Mars-van Krevelen rate model was used to explain the results. The object of this study was to study the kinetic behavior of the platinum catalyst for deep oxidation. The conversions of MEK and toluene were increased as the inlet concentration was decreased and the reaction temperature was increased. The maximum deep conversion of MEK and toluene were 91.81% and 55.69% at $350^{\circ}C$, respectively. The ${\kappa}_3$ constant increases with temperature faster than the ${\kappa}_1$ constant, that is, the surface concentration of ($VOCs{\cdots}O$) is higher than that of (O) at higher temperature according to the Mars-van Krevelen mechanism. Also the activation energy of toluene was larger than MEK for toluene is aromatic compound which have stronger bonding energy.Therefore, the catalytic incineration kinetics of MEK and toluene with Mars-van Krevelen mechanism could be used as the basic data for industrial processes.

  • PDF

Catalytic performance of Al-MCM-48 molecular sieves in the isopropylation of phenol with isopropyl acetate (isopropyl acetate을 이용한 페놀의 isopropylation 반응의 Al-MCM-48 분자체 촉매반응 특성)

  • Venkatachalam, Kandan;Hemalatha, Pushparaj;Peng, Mei-Mei;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.144-146
    • /
    • 2011
  • Al-MCM-48 molecular sieves (Si/Al = 25, 50, 75 and 100) were synthesized hydrothermally using cetyltrimethyl ammonium bromide as the structure directing template. The orderly arrangement of mesopores was evident from the low angle X-ray diffraction patterns and TEM images. The catalytic performance was evaluated in the vapour phase isopropylation of phenol with isopropyl acetate. Phenol conversion decreased with increase in the Si/Al ratio of the catalysts. The major reaction product was 4-isopropyl phenol (selectivity: 78%). Delocalization of phenolic oxygen electron pair over the aromatic ring promoted para-selective alkylation. Such delocalization could be aided by the hydrophilic surface of the molecular sieves. Though ester was used as the alkylating agent, phenyl isopropyl ether was not formed

  • PDF

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

A study of decomposition of sulfur oxides using Calcium hydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구)

  • Kim, Da Young;Woo, In Sung;Lee, Sun Hee;Kim, Do Hyeon;Kim, Byeong Cheol
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.547-560
    • /
    • 2013
  • In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.

  • PDF

Synthesis, Structural Characterization, and Catalytic Activity of Flower Like ZnO Nanostructures

  • Ramachandran, K.;Kumar, G. Gnana;Kim, Ae Rhan;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1091-1097
    • /
    • 2014
  • Tageteserecta flower like zinc oxide nanostructures composed of hexagonal nanorods were synthesized via sonochemical method at room temperature. The synthesized nanomaterials exhibited wurtzite hexagonal phase structure with the single crystalline nature. The diameter of the individual nanorods that constitute the flower shaped zinc oxide structures is in the range of 120-160 nm. The sonication time effectively determined the morphological properties of the prepared materials. The catalytic activity of prepared zinc oxide nanostructures towards N-formylation reactions were evaluated without any surface modification and the nanostructures exhibited good reaction yield with the prompt recyclability behavior.

Polyol Synthesis of Ruthenium Selenide Catalysts for Oxygen Reduction Reaction

  • Lee, Ki-Rak;Woo, Seong-Ihl
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3145-3150
    • /
    • 2010
  • Ruthenium catalysts modified by selenium have been introduced as alternative materials to Pt in Direct methanol fuel cells (DMFCs). RuSe nano-particles were synthesized on the Vulcan XC72R carbon supports via polyol method. The prepared catalysts were electrochemically and physically characterized by cyclic voltammetry (CV,) linear sweep voltammetry, methanol tolerance test, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energydispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Increasing the Se concentration up to 20 at % increased the electro-catalytic activity for the oxygen reduction. By increasing Se amount, Ru metallic form on the surface was increased. The $Ru_{80}Se_{20}$/C catalysts showed the highest oxygen reduction reaction (ORR) activity and outstanding methanol tolerant property in half cell tests as well as single cell test.

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction

  • Ghanashyam, Gyawali;Jeong, Hae Kyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.120-127
    • /
    • 2022
  • Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

Characterization of NiSO4 Supported on Fe2O3 and Catalytic Properties for Ethylene Dimerization

  • Pae, Young-Il;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1273-1279
    • /
    • 2007
  • The NiSO4 supported on Fe2O3 catalysts were prepared by the impregnation method. No diffraction line of nickel sulfate was observed up to 30 wt %, indicating good dispersion of nickel sulfate on the surface of Fe2O3. The addition of nickel sulfate to Fe2O3 shifted the phase transition of Fe2O3 (from amorphous to hematite) to higher temperatures because of the interaction between nickel sulfate and Fe2O3. 20-NiSO4/Fe2O3 containing 20 wt % of NiSO4 and calcined at 500 oC exhibited a maximum catalytic activity for ethylene dimerization. The initial product of ethylene dimerization was found to be 1-butene and the initially produced 1-butene was also isomerized to 2-butene during the reaction. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method.