• Title/Summary/Keyword: Catalytic Reduction

Search Result 775, Processing Time 0.03 seconds

Evaluation of Concentration and Reaction Kinetics through Color Analyses (색상 분석법을 이용한 농도 및 촉매반응속도 측정)

  • Lee, Euna;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-283
    • /
    • 2022
  • UV-vis spectroscopy is one of the powerful tools for measuring the concentrations of reactant and products during a chemical reaction. However, there is an limitation of using the technique when the reaction undergoes in high concentration and high temperature. Color analysis using camera images can provide the identical results with UV-vis analysis with regardless of the sample concentration and temperature. The catalytic reduction reaction of resazurin to resorufin was investigated using the color analysis with the color spaces such as CIE L*a*b*. Moreover, the color analysis enabled the independent analysis of two different material's concentrations without the deconvolution of overlapped wavelengths unlike the case of using UV-vis spectroscopy.

A Study on the NH3-SCR Activity of the VWSbTi According to the Calcination Temperature of WSbTi (WSbTi의 소성온도에 따른 VWSbTi 촉매의 NH3-SCR 효율 연구)

  • Eo, Eun Gyeom;Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.64-70
    • /
    • 2022
  • In this study, an experiment was performed by adding Sb during NH3-selective catalytic reduction (NH3-SCR) while varying calcination temperatures from 400 to 700 ℃ to improve the low temperature denitrification efficiency of VWTi catalyst. As a result, VWSbTi(500) and VWSbTi(600) catalysts corresponding to Sb calcination temperatures of 500~600 ℃ showed the best denitrification performance at low temperatures below 300 ℃. BET, XRD, Raman, XPS, H2-TPR, and NH3-TPD analyses were performed In order to confirm physicochemical properties according to the calcination temperature. In the case of VWSbTi(500) and VWSbTi(600), an acid site increased with the generation of W=O species, and superb activity at low temperatures was exhibited due to the excellent redox characteristics and increase in electron density of tungsten. Furthermore, in the case of VWSbTi(700), as the crystalline V2O5 structure was formed, the denitrification efficiency decreased. Thus the optimum calcination temperature during Sb addition process was confirmed.

SCR facility design for the selective catalyst performance of mixed gas

  • Woohyeon, Hwang;Kyung-Ok, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, the design conditions and CFD analysis results are compared and reviewed in SCR that can optimally reduce nitrogen compounds. To this end, it was analyzed and compared using CFD to see if the design criteria were satisfied for the shell and tube areas of the boiler. In the SCR system, the analysis area is the gas/air heat exchanger on the shell side, and eight tubes of the gas/air heat exchanger on the tube side. Through CFD analysis, the gas velocity distribution on the primary catalyst side of the SCR system was designed to be 2.4%, and the NH3/NOx molar ratio distribution was 3.7%, which satisfied the design criteria. In addition, the uniformity of the temperature distribution was confirmed and the required condition of 260℃ or higher was satisfied. The angle of the gas entering the catalyst met the design conditions at 2.9 degrees, and the pressure loss that occurred also satisfied the design requirements. Through this CFD analysis, it was confirmed that it was designed and operated by satisfying the design conditions required for each area.

Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst (ZIF-67을 이용한 이기능성 촉매의 최신연구 동향)

  • Kim, Sang Jun;Jo, Seung Geun;Park, Gil-Ryeong;Lee, Eun Been;Lee, Jae Min;Lee, Jung Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.98-106
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

Highly Sensitive sub-ppm level Trimethylamine Gas Sensor Based on Porous CuO/In2O3 Nanostructures (고감도 sub-ppm 수준의 다공성 CuO/In2O3나노구조 트리메틸아민 가스센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.305-309
    • /
    • 2024
  • Trimethylamine (TMA) is an organic amine gas that serves as a key indicator for evaluating the freshness of seafood. We synthesized a highly sensitive trimethylamine (TMA) sensor based on porous indium oxide (In2O3) nanoparticles (NPs) loaded with CuO in the range of 6.7 to 28.4 at.%. CuO was loaded by hydrazine reduction onto as prepared In2O3 NPs using the microwave irradiation method. Crystal structures, morphologies, and chemical composition of CuO/In2O3 nanostructures (NSs) were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry. The response of the 23.8 at.% CuO/In2O3 to 2.5 ppm TMA at 325℃ was 5.7, which was 2.8 times higher than that of porous In2O3 NPs. The high sensitivity and selective detection of TMA were attributed to electronic interactions between CuO and In2O3 and the high catalytic activity of CuO to TMA. Altogether, this CuO/In2O3 sensor could be used in the future to detect low concentrations of TMA, thereby aiding in the storage and distribution of marine food resources.

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas (선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화)

  • Jeong, Haeyoung;Kim, Taeyong;Im, Eunmi;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.