• Title/Summary/Keyword: Catalytic Dehydration

Search Result 51, Processing Time 0.023 seconds

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Response Surface-Optimized Isolation of Essential Fatty Acids via Castor Oil Dehydration

  • Suratno, Lourentius;Imanuel, Anugerahwan;Brama, Andika;Adriana Anteng, Anggorowati;Ery Susiany, Retnoningtyas;Kiky Corneliasari, Sembiring;Wiyanti Fransisca, Simanullang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • The reaction conditions optimization, including the temperature of the reaction, amount of catalyst required, and reaction time for the linoleic acids (LAs) and conjugated linoleic acids (CLAs) production by catalytic dehydration of castor oil via saponification was investigated by response surface methodology (RSM). It was confirmed that all three parameters (temperature, time, and amount of catalyst) were influential factors in isolating LAs and CLAs. When the temperature was increased, the iodine value increased, and the reaction time and catalyst amount increased. The optimal reaction conditions were: 240 ℃, 2.2 h reaction time, and 7 wt% catalyst amount. The maximum iodine value reached 156.25 with 91.69% conversion to the essential fatty acids.

Fabrication and Characterization of Titanate Nanotube Supported ZSM-5 Zeolite Composite Catalyst for Ethanol Dehydration to Ethylene

  • Wu, Liangpeng;Li, Xinjun;Yuan, Zhenhong;Chen, Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.525-530
    • /
    • 2014
  • Titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst was fabricated by decorating ZSM-5 zeolite on the hydrothermally synthesized titanium dioxide via hydrothermal process and subsequent annealing. The catalyst was characterized by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM) and Nitrogen adsorption-desorption (BET). The surface acidity of the catalyst was measured by means of Fourier transform infrared (FT-IR) spectrum of pyridine adsorption. And the catalytic activity for ethanol dehydration to ethylene was evaluated in a continuous flow fixed-bed reactor. Attributed to the increase of the effective surface acid sites caused by titanium dioxide nanotube as electron acceptor, titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst exhibits strongly enhanced activity for ethanol dehydration to ethylene.

The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol (이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향)

  • Sim, Hye-In;Park, Jung-Hyun;Cho, Jun Hee;Ahn, Ji-Hye;Choi, Min-Seok;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.208-213
    • /
    • 2013
  • Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at $100^{\circ}C$ in aqueous solution and the resulting hydroxides were calcined at $700^{\circ}C$ for 6 h to obtain the crystalline $ZrO_2$. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), $N_2$-sorption, transmission electron microscopy (TEM), $NH_3$ temperature-programmed desorption ($NH_3$-TPD), $CO_2$-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal $ZrO_2$ phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at $700^{\circ}C$. The increase of aging time showed the production of smaller particle size $ZrO_2$ resulting that the higher specific surface area and total pore volume. $NH_3$-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of $CO_2$-TPD showed the reverse trend of $NH_3$-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over $ZrO_2$ catalyst aged for 168 h which had the highest $S_{BET}$ ($178\;m^2\;g^{-1}$). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol.

Spectroscopic Studies on ZrO2 Modified with MoO3 and Activity for Acid Catalysis

  • Sohn, Jong-Rack;Chun, Eun-Woo;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1785-1792
    • /
    • 2003
  • Zirconia modified with $MoO_3$ was prepared by impregnation of powdered $Zr(OH)_4$ with ammonium heptamolybdate aqueous solution followed by calcining in air at high temperature. Spectroscopic studies on prepared catalysts were performed by using FTIR, Raman, XRD, and DSC and by measuring surface area. Upon the addition of molybdenum oxide to zirconia up to 15 wt%, the specific surface area increased in proportion to the molybdate oxide content, while acidity measured by irreversible chemisorption of ammonia exhibited a maximum value at 3 wt% of $MoO_3$. Since the $ZrO_2$ stabilizes the molybdenum oxide species, for the samples equal to or less than 30 wt%, molybdenum oxide was well dispersed on the surface of zirconia and no phase of crystalline $MoO_3$ was observed at any calcination temperature above $400^{\circ}C$. The catalytic activities for cumene dealkylation were roughly correlated with the acidity of catalysts measured by ammonia chemisorption method, while the catalytic activities for 2-propanol dehydration were not correlated with the acidity because weak acid sites are necessary for the reaction.

Acidic Properties of Tungsten Oxide Supported on Zirconia and Catalytic Activities for Acid Catalysis (Zirconia에 담지된 산화텅스텐 촉매의 산 성질과 산 촉매활성)

  • Sohn, Jong Rack;Park, Man Young
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.247-251
    • /
    • 1999
  • Tungsten oxide supported on zirconia was prepared by drying powdered $Zr(OH)_4$ with ammonium metatungstate aqueous solution, followed by calcining in air at high temperature. Upon the addition of only small amount of tungsten oxide (1 wt % $WO_3$) to $ZrO_2$, both the acidity and acid strength of catalyst increased remarkably, showing the presence of $Br{\ddot{o}}nsted$ and Lewis acid sites on the surface of $WO_3$/$ZrO_2$. The high acid strength and large amount of acid sites on $WO_3$/$ZrO_2$ were due to the presence of the W=O bond nature of complex formed by the interaction between $WO_3$ and $ZrO_2$. The catalyst containing 20 wt % $WO_3$, calcined at 973 K, showed the highest catalytic activity for the 2-propanol dehydration, while the catalyst containing 15 wt % $WO_3$, calcined at 1023 K, exhibited the highest catalytic activity for the cumene dealkylation. For the 2-propanol dehydration the catalytic activities of $WO_3$/$ZrO_2$ catalysts were roughly correlated with their acidities.

  • PDF

Electronic structure and catalytic reactivity of model oxide catalysts

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.35-35
    • /
    • 2010
  • Understanding the mechanistic details of heterogeneous catalytic reactions will provide a way to tune the selectivity between various competing reaction channels. In this regard, catalytic decomposition of alcohols over the rutile $TiO_2$(110) surface as a model oxide catalyst has been studied to understand the reaction mechanism employing the temperature-programmed desorption (TPD) technique. The $TiO_2$(110) model catalyst is found to be active toward alcohol dehydration. We find that the active sites are bridge-bonded oxygen vacancies where RO-H heterolytically dissociates and binds to the vacancy to produce alkoxy (RO-) and hydroxyl (HO-). Two protons adsorbed onto the bridge-bonded oxygen atoms (-OH) readily react with each other to form a water molecule at ~500 K and desorb from the surface. The alkoxy (RO-) undergoes decomposition at higher temperatures into the corresponding alkene. Here, the overall desorption kinetics is limited by a first-order decomposition of intermediate alkoxy (RO-) species bound to the vacancy. We show that detailed analysis on the yield and the desorption temperatures as a function of the alkyl substituents provides valuable insights into the reaction mechanism. After the catalytic role of the oxygen vacancies has been established, we employed x-ray photoelectron spectroscopy to further study the surface electronic structure related to the catalytically active defective sites. The defect-related state in valence band has been related to the chemically reduced $Ti^{3+}$ defects near the surface region and are found to be closely related to the catalytic activity of the $TiO_2$(110) surface.

  • PDF

Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst (설폰화 활성탄 촉매를 이용한 솔비톨의 아이소소바이드로의 탈수반응)

  • Kang, Hyo Yoon;Hwang, Dong Won;Hwang, Young Kyu;Hwang, Jin-Soo;Chang, Jong-San
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • A sulfonated activated carbon (AC-$SO_3H$) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-$SO_3H$ at 423.15 K. Although AC-$SO_3H$ possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-$SO_3H$, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosobide from sorbitol. The reactive distillation process using AC-$SO_3H$, the turnover number of AC-$SO_3H$ was 4 times higher than the conventional two-step process using sulfuric acid.

Dehydration Reaction of Fructose to 5-Hydroxymethylfurfural over Various Keggin-type Heteropolyacids (Keggin형 헤테로폴리산에 의한 과당의 5-하이드록시메틸퍼퓨랄로의 전환을 위한 탈수반응)

  • Baek, Ja-Yeon;Yun, Hyeong-Jin;Kim, Nam-Dong;Choi, Young-Bo;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.220-228
    • /
    • 2010
  • Four Keggin-type heteropolyacids, $H_nXM_{12}O_{40}$(X = P and Si, M = W and Mo) that were substituted with heteroatom and polyatom were applied to the dehydration reaction of fructose to 5-hydroxymethylfurfural (HMF). The results showed that the acid became stronger when the heteroatom and polyatom were substituted with P and W than the cases of Si and Mo, respectively. However, the amount of acidic sites increased with the decrease in the acid strength, resulting in the change of the catalytic activity of heteropolyacids in the dehydration reaction. The experimental results revealed that four different heteropolyacids produced similar amounts of HMF via the dehydration reaction of fructose due to the counterbalancing effect between the amount of active sites, which is related to the catalytic activity of heteropolyacids, and the softness of polyanion. In addition, it was observed that the prepared heteropolyacids showed good structural stability after heat treatment at $200^{\circ}C$.

NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis

  • Sohn, Jong-Rack;Choi, Hee-Dong;Shin, Dong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.821-829
    • /
    • 2006
  • A series of catalysts, $NiO/La_2O_3-ZrO_2/WO_3$, for acid catalysis was prepared by the precipitation and impregnation methods. For the $NiO/La_2O_3-ZrO_2/WO_3$ samples, no diffraction lines of nickel oxide were observed, indicating good dispersion of nickel oxide on the catalyst surface. The catalyst was amorphous to X-ray diffraction up to 300 ${^{\circ}C}$ of calcination temperature, but the tetragonal phase of $ZrO_2$ and monoclinic phase of $WO_3$ by the calcination temperatures from 400 ${^{\circ}C}$ to 700 ${^{\circ}C}$ were observed. The role of $La_2O_3$ in the catalyst was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The high acid strength and high acidity were responsible for the W=O bond nature of complex formed by the modification of $ZrO_2$ with $WO_3$. For 2-propanol dehydration the catalyst calcined at 400 ${^{\circ}C}$ exhibited the highest catalytic activity, while for cumene dealkylation the catalyst calcined at 600 ${^{\circ}C}$ showed the highest catalytic activity. 25-$NiO/5-La_2O_3-ZrO_2/15-WO_3$ exhibited maximum catalytic activities for two reactions due to the effects of $WO_3$ modifying and $La_2O_3$ doping.