• 제목/요약/키워드: Catalytic Combustion

검색결과 252건 처리시간 0.029초

세라믹 가스 터빈용 촉매연소기의 연소특성 (Combustion Characterisitics of a Catalytic Combustorfor an Automotive Ceramic Gas Turbine)

  • 김영일
    • 한국산업융합학회 논문집
    • /
    • 제1권2호
    • /
    • pp.49-54
    • /
    • 1998
  • In the catalytic combustor, combustion characteristic and deterioration of catalysts were affected by non-uniformity of pre-mixed gas, Therefore, formation of uniform pre-mixed gas is one of important subjects. In this study, the effect of uniformity and non-uniformity of pre-mixed gas supplied to the catalyst was examined to clarify reaction acceleration and combustion characteristic of the catalytic combustion. It was clarified that static mixer or vaporizer tube length of about 150mm and weak swirl to a combustion air were effictive expedient to make uniform pre-mixed gas. And catalystic inlet temperature needs more than $600^{\circ}C$ with rich pre-mixed gas to active reaction.

  • PDF

촉매연소를 이용한 무 산소 가스 생성에 관한 연구 (A Study on the Generation of Oxygen-Free Gas Using Catalytic Combustion for Industrial Applications)

  • 정남조;강성규;송광섭;조성준;유상필;유인수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.46-52
    • /
    • 2001
  • In this study, the generation of oxygen-free gas using catalytic combustion for industrial applications is explained ; heat treatment and copper annealing. For the experiment, Pd catalysts were determined by testing their catalytic activities over LPG in a micro-reactor. Combustion characteristics for the generation of oxygen-free atmospheric gas and the effect of flue gas upon surface oxidation were estimated form this experiment. As a result of the experimental investigation, we can state that the catalytic combustion could generate oxygen-free atmospheric gas suitable for industrial applications, but vapor produced by combustion process must be carefully considered as a new factor of surface oxidation.

  • PDF

Pt/$Al_2O_3$가 코팅된 니켈폼을 이용한 수소-공기 예혼합 기체의 촉매 연소 (Catalytic combustion of $H_2$/Air mixture using Pt/$Al_2O_3$ coated nickel foam)

  • 진정근;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.37-44
    • /
    • 2007
  • A nickel foam, one of metal foams was seleced as a catalyst support instead of conventional ceramic materials. $Al_2O_3$ was coated on the surface of nickel foam to increase the surface area. $Al_2O_3$ coating process was based on sol-gel process. SEM image was obtained and $Al_2O_3$ coverage was confirmed. Combustion experiments were carried out using SUS combustor and $H_2$/air mixture. Temperatures were measured with different equivalence ratios and $H_2$ flow rates. $H_2$ conversion rates were calculated by the analysis of product gas using gas chromatography. Catalytic combustion of $H_2$ was complete and stable with Pt/$Al_2O_3$ coated nickel foam and influences of water vapor were confirmed during the beginning of combustion.

  • PDF

촉매연소를 이용한 수소버너의 작동 특성에 관한 연구 (A Study about an Operating Characteristic of Hydrogen Burner by Using Catalytic Combustion)

  • 김태영;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Human has faced in lack of fossil fuel and environmental crisis because of high population growth and development of industry. Hydrogen, unlimited amount and clean resource from water electrolysis, is remarkably known as the solution of recent energy crisis. One of the special characteristics of hydrogen is that a little amount of catalytic such as platinum and palladium makes nonflammable combustion, in other words catalyst combustion. Catalytic combustion fueled by hydrogen is environmentally friendly. This paper considers some comparisons of characteristic of catalytic combustion between a single layer of platinum catalyst, double layer of platinum and nickel catalysts and mixture of platinum and nickel catalysts. Some experiments of temperature distribution at different positions and characteristic of combustion in low temperature region were done in order to find an applicable possibility as a house-cooking burner.

핀 튜브를 이용한 촉매 열 교환기의 연소특성 (THE COMBUSTION CHARACTERISTICS OF THE CATALYTIC HEAT EXCHANGER WITH FIN TUBES)

  • 유상필;서용석;조성준;강성규
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.169-177
    • /
    • 2000
  • The catalytic heat exchanger, which integrates two functions of heat generation and heat exchange into one equipment, was designed and its characteristics were investigated by the experiment and numerical simulation. The surface of the fin tube was deposited with Pd catalyst. The conversion of the mixture in the catalytic heat exchanger was more significantly affected by the inlet velocity of the mixture than by the inlet temperature and equivalence ratio of the mixture. It was found that the catalytic surface area of the fin tubes should be sufficiently increased to make the combustion intensity of the catalytic heat exchanger as high as possible. Results showed that the fin tubes, placed in the triangularly staggered form, should be adjusted so that the mixture flows uniformly over all the catalytic fin surfaces. Numerical simulation results demonstrated that the flow pattern of the mixture significantly affected the conversion of the mixture.

  • PDF

저공해형 촉매연소식 소형 콘덴싱보일러 개발 (Development of the Catalytic Combustion Condensing Boiler of Lower Emission Type for Domestic Use)

  • 김호연;이승호;조원일;백영순
    • 한국가스학회지
    • /
    • 제5권1호
    • /
    • pp.45-51
    • /
    • 2001
  • 촉매연소는 근래 들어 산업용 및 가정용의 다양한 분야에 적용되고 있는 환경친화적인 기술로서 본 연구는 고온용 촉매제조기술과 촉매연소기 개발을 중점적으로 수행하여 이를 상용화된 콘덴싱 보일러에 적용하는 데 그 목표를 두었다. 고온용 촉매로는 귀금속 팔라듐(Pd)을 사용하여 담체인 알루미나$(Al_{2}O_{3})$와 지르코니아$(ZTO_{2})$에 일정 중량비로 담지하였고, 천연가스 연소시 촉매의 활성을 비긴 분석하였다. 그 결과 $Pd/Al_{2}O_{3}\;=\;4$가 활성이나 내구성에서 우수한 것으로 나타났다. 그리고 기존의 콘덴싱 보일러에 적용되고 있는 판형 연소기(Plate-type combustor)를 시험모델로 촉매성능 및 연소성능을 파악하였고, 이를 토대로 연소면적을 증가시킨 원통형 촉매연소기(Cylindrical-type catalyst combustor)를 개발하였다. 또한, 원통형 촉매연소기를 적용한 콘덴싱 보일러의 촉매연소 성능실험을 통하여 결정한 노즐 5.95mm와 오리피스 21mm로 최적의 연소상태를 갖는 25,000 kcal/hr 촉매연소식 콘덴싱 보일러를 개발하였다.

  • PDF

금속 프탈로시아닌을 이용한 아세트알데히드의 촉매연소 (Catalytic Combustion of Acetaldehyde by Metal Phthalocyanines)

  • 서성규
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.409-414
    • /
    • 2000
  • Catalytic combustion of acetaldehyde has been investigated as a representative of unpleasant odor by its reaction with metal-phthalocyanines(PC). The experiment was conducted at the reaction temperature of 200~41$0^{\circ}C$ and the concentratio of acetaldehyde in air at the range of 0.07~0.94 mole% The pretreated metal-PC has been characterized by UV-VIS and XRD analysis. According to this study catalytic activity of metal -PC was improved by air pretreatment at 45$0^{\circ}C$ for 1hr. Under this pretreatment condition Co-PC and Cu($\alpha$)-PC were destroyed and new metal oxides were formed such as Co3O4 and CuO respectively. However Zn-PC retained its basic structure even afte air pretreatment. The order of catalytic activity on acetaldehyde combustion was summarized as follows : Zn-PC$\alpha$)-PC. It was found that the complete combustin of acetaldehyde with Cu($\alpha$)-PC was accomplished at its concentrations below 0.2mole% (32$0^{\circ}C$) and 0.6 mole%(35$0^{\circ}C$) in air.

  • PDF

촉매연소 열교환기 개발 (Development of a Catalytic Heat Exchanger)

  • 정남조;강성규;서용석;조성준;유인수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.63-69
    • /
    • 1999
  • The heat exchanger using the catalytic combustion can be applied to petrochemical processes and to VOC incineration facilities. In this work, the experiment for a new fin typed catalytic heat exchanger was conducted. Catalysts for the heat exchanger were determined by testing their catalytic activities over LPG in a micro-reactor. Based on experimental results of the fin typed catalytic heat exchanger, a small scaled heat exchange system was made to test its feasibility as a reboiler used in petrochemical processes. The results showed that the catalytic heat exchanger could combust off-gases effectively and at the same time could recover completely heat produced by catalytic combustion.

  • PDF

자기촉매 특성을 이용한 탄소나노튜브의 연소합성 연구 (Combustion synthesis of carbon nanotubes using their self-catalytic behavior)

  • 우상길;홍영택;권오채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1815-1820
    • /
    • 2008
  • Self-catalytic behavior of combustion-synthesized carbon nanotubes (CNTs) is evaluated using a double-faced wall stagnation flow burner with a CNT-deposited stainless steel plate wall. CNT formation is observed using field-emission scanning and transmission electron microscopies and Raman spectroscopy. A self-catalytic behavior of multi-walled CNTs (MWCNTs) shows the enhanced ratio of channel diameter to tube wall thickness and the enhanced intensity ratio of G-band to D-band in Raman spectroscopy, implying that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via a CNT self-catalytic flame-synthesis process. Thus, using a DWSF burner through the self-catalytic process has potential in mass production of CNTs having much improved quality.

  • PDF

MCFC 배가스용 촉매연소기 연소특성에 관한 연구 (A Study on the Combustion Characteristics of MCFC Offgas Catalytic Combustors)

  • 이상민;이연화;안국영;박인욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • Anode off-gas of high temperature fuel cells such as MCFC still contain combustible components such as hydrogen, carbon monoxide and hydrocarbon. Thus, it's very important to fully burn anode off-gas and use the generated heat in order to increase system efficiency. In the present study, catalytic combustors have been applied to high temperature MCFC system so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple commercial catalysts having different structures and compositions. In order to determine the design conditions of the catalytic combustor, parameters such as inlet temperature, space velocity and excess air ratio have been varied and optimized for combustor design. Results show that $H_2$ in off-gas assists $CH_4$ combustion in a way that it decreases minimum inlet temperature limit and increases maximum space velocity while keeping high fuel conversion efficiency.

  • PDF