• 제목/요약/키워드: Catalytic Combustion

검색결과 252건 처리시간 0.032초

저NOx형 하니컴 촉매버너의 개발 (Development of a low NOx burner with honeycomb catalyst)

  • 서용석;박병식;강성규
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.822-829
    • /
    • 1997
  • A catalytic burner was studied which can be used as a heater operated in medium temperature. Noble metal catalysts (Pd/NiO) were used, which were supported on alumina wash coated honeycomb. The maximum heat-resisting temperature of the catalyst is about 900.deg. C. Combustion efficiency of the catalytic burner reached more than 99.5 % at the excess air ratio above 1.25.NOx emissions were lower than 1.0 ppm at all operation conditions. The operation condition for a stable catalytic combustion was obtained. It was dependent on the catalyst thickness. The 30 mm thick catalyst showed the widest stable catalytic combustion region. Stable catalytic combustion region of 30 mm thick catalyst was the operation condition of excess air ratio 1.25 - 1.75 and heat flux 7 - 14 kcal/h center dot cm$^{2}$.

적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성 (An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography)

  • 최원영;권세진
    • 한국연소학회지
    • /
    • 제10권3호
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF

밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성 (Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum)

  • 최원영;권세진
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF

자체 예열식 촉매 열 교환식 연소특성 (The Combustion Characteristice of the Self Preheating Type Catalyic Heat Exchanger)

  • 유상필;송광섭;서용석;조성준;류인수
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2001년도 춘계 학술발표회 논문집
    • /
    • pp.45-52
    • /
    • 2001
  • 촉매연소의 응용기기 개발을 위한 연구의 일환으로, 촉매연소가 도입된 열교환기에 대한 연소특성을 분석하였다. 정상상태에서 촉매연소를 이용한 혼합가스의 예열과 가열매체에 대한 열 공급이 동시에 이루어지도록 장치를 구성하고, 특성실험을 수행하였다. 혼합가스의 예열온도, 유속, 당량비 등에 대한 연소특성을 분석하고, 촉매 층의 온도분포에 따른 연소특성도 살펴보았다. 제한된 온도범위 내에서 연소반응이 정상상태에 도달되는 것은 촉매연소 기기 개발에 매우 중용한 요소이며, 이를 위해서 혼합가스의 예열온도, 유속 당량비 등이 일정한 범위에서 제어되어야 하고, 촉매 층의 열평형이 이루어져야 됨을 알았다.

  • PDF

고온촉매연소의 가스터빈 적용에 관한 수치적 연구 (Numerical Study on the Application of High Temperature Catalytic Combustion to a Gas Turbine)

  • 김형만;전호식;장석용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.989-994
    • /
    • 2001
  • Numerical simulations of high temperature catalytic combustion have been performed for the application to a gas turbine combustor. Dependences of inlet temperature and pressure on the distributions of temperature and species concentrations were investigated using plug flow model with detailed homogeneous and heterogeneous chemistries of methane-air mixtures. Honeycomb typecombustor deposited with Pt catalyst of 100mm in length and 26mm in diameter is used. The results show that rapid increase of temperature profile occurs earlier with the increase of inlet temperature and the decrease of inlet pressure. The condition which catalytic combustion is stabilized exists at certain range of inlet temperature and pressure. The state of catalytic combustion is also confirmed by the distributions of species concentration.

  • PDF

촉매연소기에서 2단 공급공기와 연료가 NOx 저감에 미치는 연구 (NOx Reduction with Secondary Air and Fuel in a Catalytic Combustor)

  • 정진도;이보영
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.541-549
    • /
    • 2003
  • A basic experimental study was conducted in order to find the optimum combustion control technology to decrease the thermal NO$_{x}$, by applying the catalytic combustion method with natural gas. NO$_{x}$ emission increased with increasing space velocity due to temperature rising in the furnace. In order to overcome the low resistance to high temperature, secondary air was supplied to the CST combustor. The following secondary fuel formed combustible mixture in part, which resulted in steep increase of the exiting temperature of the 2nd catalyst bed. It led to the more generator of NO$_{x}$, 30∼60% of the 1 st catalyst bed. It might be due to the potential increase of thermal NO$_{x}$.

매트촉매 버너의 적외선 복사열전달 특성 (Infrared Radiative Heat Transfer Characteristics of Fiber Mat Catalytic Burners)

  • 송광섭;최정인
    • Korean Chemical Engineering Research
    • /
    • 제50권6호
    • /
    • pp.1049-1055
    • /
    • 2012
  • 화염 없이 연소가 일어나고 원적외선 복사열을 활용할 수 있는 매트 촉매버너를 제작하여 연소실험과 전열특성 분석을 수행하였다. 매트 촉매버너를 이용한 예혼합 연소실험에서 연소열의 9~17% 정도가 현열로 배출되었으며, 연소조건에 따라 차이를 보였다. 촉매버너와 시료 사이 거리증가에 따라 복사강도가 적어졌는데, 매트 촉매버너 아래에서 거리에 따라 변하는 복사에너지 흡수면적을 계산할 수 있는 수식을 유도하였다. 이 식을 멜라민 건조실험 결과와 비교하여 상관성이 있음을 보였다. 매트 촉매버너를 이용하여 멜라민, wood chip, 농산 pallet 등에 대한 건조실험을 수행하고, 이들의 건조속도로부터 에너지 이용효율을 계산하였다. 매트 촉매버너를 이용한 건조에서 최대 에너지 이용효율은 wood chip 건조에서 79% 정도까지 얻을 수 있었다.

순차식 촉매연소 시스템 (Sequential Catalytic Combustion System)

  • 유상필;정남조;이승재;류인수;강성규;송광섭
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.197-200
    • /
    • 2004
  • Compared to conventional flame combustion, catalytic combustion had the advantage of oxidation of V.O.C. gas which was high voluminous, low caloric mixture flow. However, the temperature of mixture gas should be over the one of catalytic reaction start and the control of reaction on the catalytic surface tends to be vulnerable. To overcome these obstacles, composition of both catalytic combustor and heat exchanger was devised and named the sequential catalytic combustion system. In this system, only trigger unit needed preheating process for transient starting time. Once trigger unit was ignited, the next unit w3s supplied heat to ignite from that and same process was performed to the last one sequentially. When it come to steady state, whole mixture gas was oxidated at each unit simultaneously and preheating for trigger unit was not needed any more. System of 100 kcalh/hr capacity was devised and operated successfully.

  • PDF

프로판의 촉매연소 특성에 관한 수치적 연구 (A Numerical Study on the Propane Combustion Characteristics in a Catalytic Combustor)

  • 이연화;김종민;김만영;유명종
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • 촉매 연소는 낮은 온도와 희박한 조건에서 연소가 가능할 뿐만 아니라 $NO_x$, CO, UHC와 같은 오염물질을 효과적으로 감소시킬 수 있다. 하지만 촉매연소는 균질 반응뿐만 아니라 비균질 반응에 의해서 지배되는 매우 복잡한 반응과정을 가지고 있기 때문에 촉매 연소기의 안정적인 작동을 위해서는 다양한 탄화수소의 촉매연소 특성에 대한 연구가 필요하다. 연구에서는 메탄 촉매연소 특성에 대한 수치적 연구의 검증을 거친 후 수소의 공급량, 과잉공기비, 그리고 공간속도의 변화에 따른 프로판의 촉매연소 특성을 고찰하였다.

  • PDF

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권2호
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF