• 제목/요약/키워드: Catalyst stabilization

검색결과 32건 처리시간 0.019초

Preparations of Carbon Fibers from Precursor Pitches Synthesized with Coal Tar or Petroleum Residue Oil

  • Yang, Kap-Seung;Park, Young-Ok;Kim, Yong-Min;Park, Sang-Hee;Yang, Cheol-Min;Kim, Yong-Joong;Soh, Soon-Young
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.97-102
    • /
    • 2000
  • Pitch precursors were synthesized from coal tar(CT) and pyrolysis fuel oil(PFO, petroleum residue oil) at relatively low temperature of $250^{\circ}$, in the presence of horontrifluorideidiethyletherate complex(BFDE) as a catalyst and nitrobenzene(NB) as a co-catalyst. The softening point, nitrogen content and carbon yield increased with an increase of concentration of NB. The pitch precursors with good spinnability were prepared by removing the volatile components through $N_2$ blowing. The precursor pitches were spun through a circular nozzle, stabilized at $310^{\circ}$ and finally carbonized at $1000^{\circ}$. The optically anisotropic structure formed at the absence of NB was changed into isotropic structure, showing a decrease in size of the flow domain. The hollow carbon fiber could be prepared in the process of stabilization. The results proposed that the morphology of carbon materials could be controlled by changing the concentration of catalyst and/or co-catalyst and/or stabilization condition that affect on the mobility of molecules during carbonization.

  • PDF

Significant Improvement of Catalytic Efficiencies in Ionic Liquids

  • Song, Choong-Eui;Yoon, Mi-Young;Choi, Doo-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1321-1330
    • /
    • 2005
  • The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive “ionic liquid effect” on catalysis are discussed.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • 제11권1호
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

Furfural 수소화반응에서 구리-크롬산화물 촉매에 대한 첨가제의 효과 (Promotors in Copper-Chromium Oxide Catalyst for Furfural Hydrogenation)

  • 전학제;서곤
    • 대한화학회지
    • /
    • 제23권3호
    • /
    • pp.152-160
    • /
    • 1979
  • Furfural의 수소화반응에 쓰이는 구리-크롬산화물계 촉매에서 바륨, 스트론륨 등의 첨가효과 및 그 기능에 관하여 조사하였다. X-선 회절에 의하면 $BaCrO_4$, $SrCrO_4$등의 생성을 확인할 수 있었으나, 촉매표면적에는 차이가 없었다. 그러나 이들의 첨가로 촉매능은 개선되어 첨가전보다 반응시간에 따른 활성저하폭이 훨씬 적어졌다. 바륨이 첨가된 또는 실기카에 분산시킨 촉매는 CO흡착으로 분산된 Cr(V)의 EPR 스펙트럼을 보여주었으며 표면의 산화-혼원과정에서 가역적인 스펙트럼을 나타내었다. 바륨의 첨가로 촉매활성점이 분산되어 존재함으로서 furfural의 수소화반응에서 향상된 촉매능을 보여주는 것으로 생각된다.

  • PDF

Effective α-Helix Stabilization via Hexenyl Propionate Cross-Link

  • Yoo, Jiyeon;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3627-3631
    • /
    • 2014
  • In this study we examined two ester-containing cross-links, hex-2-enyl acetate and hex-2-enyl propionate, as new cross-linking systems for helix stabilization of short peptides. We demonstrated that these hexenyl ester cross-links can be readily installed via a ruthenium-mediated ring-closing metathesis reaction of L-aspartic acid 4-allyl ester or L-glutamic acid 5-allyl ester at position i and (S)-2-(4'-pentenyl)alanine at position i+4 using second generation Hoveyda-Grubbs catalyst at $60^{\circ}C$. Between these two cross-links, we found that the hex-2-enyl propionate significantly stabilizes the ${\alpha}$-helical conformations of short model peptides. The helix-stabilizing effects of the hex-2-enyl propionate tether appear to be as powerful as Verdine's i,i+4 all-hydrocarbon stapling system, which is one of the most widely used and the most potent helix-stabilizing cross-linking systems. Furthermore, the hex-2-enyl propionate bridge is reasonably robust against non-enzymatic hydrolytic cleavage at a physiological pH. While extended studies for probing its chemical scopes and biological applications are needed, we believe that this new helix-stabilizing system could serve as a useful chemical tool for understanding protein folding and designing conformationally-constrained peptide drugs.

Imidazolium Hexafluorophosphate의 양이온이 HFP 수소화 반응용 Pd/C 촉매 제조에 미치는 영향 (Influence of the Cation Parts of Imidazolium Hexafluorophosphate on Synthesis of Pd/C Particles as a HFP Hydrogenation Catalyst)

  • 김창수;유계상
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.249-253
    • /
    • 2014
  • 다양한 양이온을 가지는 imidazolium hexafluorophosphate를 이용하여 탄소담지 팔라듐 촉매를 제조하여 이를 hexafluoropropylene 수소화 반응에 사용하였다. 팔라듐의 입자형태는 사용된 이온성액체의 양이온에 영향을 받는 것이 관찰되었다. 이온성액체와 팔라듐 입자 사이의 입체적 안정화 영향으로 인하여 양이온 부분의 알킬 길이가 증가할수록 팔라듐입자는 구형에서 원통형으로 변하였다. $500^{\circ}C$에서 소성한 촉매 모두 동일한 결정구조를 형성하였다. 일정한 반응조건에서 양이온에 hexyl기를 가진 이온성액체로 합성한 촉매가 가장우수한 반응성을 보였다.

La 및 Si 첨가에 의한 알루미나의 열안정화 효과 (Effect of La and Si Addition on Thermal Stabilization of Alumina)

  • 이채현;임대영;김종옥;서두원;한문희
    • 공학논문집
    • /
    • 제3권1호
    • /
    • pp.215-222
    • /
    • 1998
  • 촉매 연소용 촉매 담체인 $\gamma-Al_2O_3$ 분말의 열안정화에 미치는 La과 Si의 첨가 효과에 대하여 연구하였다. 첨가제의 첨가는 습식 impregnation방법으로 행하였고, 출발 물질은 $La(NO_3)_3{\cdot}6H_2O$$Si(OC_2H_5)_4$를 사용하였다. 열안정화 효과는 혼합분말을 고온에서 열처리 한 후 비표면적을 측정하여 고찰하였다. 첨가제로 첨가한 La과Si는 모두 순수한 $\gamma-Al_2O_3$분말에 비하여 소결을 억제함으로써 열 안정화 효과가 있음이 확인되었으며, 특히 Si 첨가한 경우에는 $\alpha-Al_2O_3$의 생성을 현저히 억제한다는 것을 확인하였다. 이들 첨가제에 의한 열안정화 효과는 첨가제에 의한 새로운 상의 생성과 표면 확산의 억제등이 주된 요인으로 판단되었다.

  • PDF

Ba 첨가에 의한 알루미나의 열 안정화 효과 (Thermal Stabilization of Alumina by Ba Addition)

  • 서두원;한문희;이채현
    • 공학논문집
    • /
    • 제2권1호
    • /
    • pp.139-145
    • /
    • 1997
  • 촉매연소용 촉매담체인 $\gamma$-$Al_2O_3$의 열안정화에 미치는 Ba의 첨가 효과에 대하여 연구하였다. Ba의 첨가는 $Ba(No_3)_3$.$6H_2O$$\gamma$-$Al_2O_3$ 분말에 wet impergnation시키는 방법으로 행하였다. Ba는 $\gamma$-$Al_2O_3$의 소결을 억제함으로써 $\gamma$-$Al_2O_3$의 열안정화에 효과적인 첨가제임을 확인하였으며 최적의 첨가량은 전체 열처리 조건에서 5 mol%임을 알 수 있었다. 이러한 Ba첨가에 의한 열안정화 효과는 이온반경이 큰 $Ba^{2+}$이온이 $\Al^{3+}$이온의 자리에 치환하여 $\Al^{3+}$이온의 표면 확산을 억제하는 효과에서 기인하는 것으로 사료된다.

  • PDF

전자선 조사와 열압축공정을 이용한 PAN 나노섬유의 안정화 및 특성분석 (Stabilization of PAN Nanofibers Using Electron Beam Irradiation and Thermal Compression Technique)

  • 김두영;전준표;신혜경;강필현
    • 방사선산업학회지
    • /
    • 제6권1호
    • /
    • pp.55-59
    • /
    • 2012
  • Polyacrylonitrile (PAN)-based carbon fibers have been widely used due to their unique chemical, electrical, and mechanical properties. Electron beam irradiation has been extensively employed as means of altering properties of polymeric materials. Electron beam irradiation can induce chemical reactions in materials without any catalyst. Electron beam irradiation may be useful in accelerating the thermal compression stabilization of PAN nanofibers. To investigate the irradiation effect on PAN fibers, PAN nanofibers were irradiated by electron beam at 1,000~5,000 kGy. Irradiated and non-irradiated PAN nanofibers were heated at 180 and $220^{\circ}C$ without applying pressure for 15 min. Then 1 metric ton has been applied for 5 min. SEM images have been found that the fiber kept its morphological behavior after the hot pressing up to electron beam irradiated 1,000 kGy. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses and temperature. FT-IR spectra have been found to decrease $C{\equiv}N$ stretch band with increasing the electron beam irradiation dose. These results indicate that the modification of PAN via reactions such as cyclization is significantly enhanced by electron beam irradiation and thermal compression technique.