• Title/Summary/Keyword: Catalyst recycling

Search Result 124, Processing Time 0.02 seconds

Esterification of Lactic Acid with Alcohols (젓산과 알코올간의 에스테르화 반응)

  • Kim, Jong-Hwa;Han, Jee-Yeun;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.243-249
    • /
    • 2005
  • Esterification of lactic acid with alcohols catalyzed by Amberlyst-type ion exchange resins and sulfuric acid was carried out in a batch reactor with total /or partial recycle of distilled condensates, respectively. The esterification of lactic acid in the total-recycling reactor (n-butanol/lactic acid = 4, $100^{\circ}C$) was promoted by decreasing the residual water and increasing the mole ratio of n-butanol/lactic acid. Also, it was confirmed that methanol with simple structure and tert-butanol with superior substitution reactivity were more effective in increasing the conversion of esterification reaction, compared to ethanol, n-butanol, and iso-butanol. In a partial-recycling reactor (n-butanol/ammonium lactate = 4, $115^{\circ}C$), the conversion of ammonium lactate into butyl lactate with 1.0 wt% Amberyst-type resins was higher in comparison to that with 0.2 mol $H_2SO_4$ (per 1.0 mol ammonium lactate). The esterification was gradually occurred during the initial stage of reaction in the presence of solid catalyst, whereas the initial addition of $H_2SO_4$ did not affect the initial rate of esterification reaction because of ammonium sulfate formation by the neutralizing reaction of ammonium lactate with sulfuric acid.

Preparation of Porous Ceramic Bead using Mine Tailings and Its Applications to Catalytic Converter (광미(鑛尾)를 활용(活用)한 다공성 세라믹 비드 제조(製造) 및 촉매(觸媒) 변환기(變換機)로의 응용(應用))

  • Seo, Junhyung;Kim, Seongmin;Han, Yosep;Kim, Yodeuk;Lee, Junhan;Park, Jaikoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.38-45
    • /
    • 2013
  • The porous ceramic beads using mine tailing were prepared and applied to catalytic converter for NOx/SOx removal. Catalytic support was used synthesized mesoporous silica (SBA-15) which coated on surface. Internal structure for porous ceramic beads was composed of three-dimensional network structure and porosity was about 80%. In addition, the specific surface area for mesoporous silica(SBA-15) coated on converter was significantly increased 55 $m^2/g$ compared with 0.8 $m^2/g$ before coating. NOx/SOx removal experiment was performed using $V_2O_5$ and $V_2O_5$/CuO converter. NOx conversion ratio for $V_2O_5$/CuO converter was approximately increased 10% compared to $V_2O_5$ converter. In addition, catalytic converter of $V_2O_5$/CuO was shown to remove 95% of NOx and 90% of SOx at reaction temperature of $350^{\circ}C$, space velocity of 10000 $h^{-1}$ and $O_2$ concentrations of 5%, respectively.

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts (Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구)

  • Sim, Jae-Wook;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Propylene Carbonate Synthesis using Supercritical $CO_2$ and Ionic Liquid (초임계 이산화탄소와 이온성 액체를 이용한 Propylene Carbonate 합성)

  • Kim, Byeong-Heon;Jang, Sung-Hyeon;Min, Se-Ryeon;Kim, Hwa-Yong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.37-40
    • /
    • 2011
  • Some ionic liquids are suitable for catalysts and solvents which are applicable to $CO_2$ fixation reaction converting $CO_2$ to carbonate. Using the ionic liquids, the synthesis process will become greener and simpler because of easy catalyst recycling and unnecessary use of volatile and harmful organic solvents. In this work, the synthesis of propylene carbonate from propylene oxide using carbon dioxide and ionic liquids were measured at high pressures up to ~140 bar and at temperatures between $60^{\circ}C$ and $80^{\circ}C$. As a results, we found the optimum condition and obtained the maximum yield under that condition.

The Improvement of Wet Strength Properties of Sheet by N-Chlorocarbamoylethylation (N-chlorocarbamoylethyl화에 의한 sheet의 습윤강도 향상효과)

  • Jeong, Myung-Joon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.63-72
    • /
    • 1999
  • For the purpose of improving the wet strength properties of paper, cellulosic fibers were modified by the processes of carbarmoylethylation and N-chlorocarbamoylethylation. Carbamoylethylated cellulose was prepared by the reaction of acrylamide with cellulosic fibers under the alkali catalyst, and N-chlorocarbamoylethylated cellulose was prepared by the addition of sodium hypochlorite into the carbamoylethylated cellulose. In carbamoylethylation reaction, the conditions of NaOH concentration, temperature and acrylamide addition rate were considered to be important factors. An initial reactivity and degree of substitution(DS) in carbamoylethylation of cellulosic fibers were effective according to increasing the addition rates of alkali, acrylamide and the temperature condition of $40^{\circ}C$. The effective wet strength properties by N-chlorocarbamoylethylation of cellulosic fibers were indicated under the conditions of DS 0.06. The wet strength of sheet was improved to 85% at the 100% basis of dry strength. From the photograph of scanning electron microscopy, fiber cuttings on the edge of sheet sample used in tensile strength testing were found in the N-chlorocarbamoylethylated sheet, due to the improvement of fiber bonding strength. The hypochlorite treatment was effective in the recycling of N-chlorocarbamoylethylated sheet, and was reduced the wet strength of sheet to be able to reslush.

  • PDF

Preparation of Novel Ionic Liquids and Their Applications in Brominating Reaction (새로운 이온용액의 제조 및 브롬화반응 응용)

  • Li, Hua;Liu, Juan;Zhu, Jiang;Wang, Hongkai
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.685-690
    • /
    • 2011
  • Novel acidic ionic liquids, 1-(${\omega}$-sulfonicacid)propyl-3-methylimidazolium bromide ([$HSO_3$pmim]Br)and 1-(${\omega}$-sulfonicacid)butyl-3-methylimidazolium bromide ([$HSO_3$bmim]Br), were prepared and used as brominating agents, catalysts and solvents in the synthesis of 1,7-dibromoheptane, respectively. 1,7-dibromoheptan with a yield of 95% was obtained at $100^{\circ}C$ for 2 h by simple phase separation. The acidic ionic liquid [$HSO_3$pmim]Br was recycled for 5 times and the yield of 1,7-dibromoheptane did not decrease remarkably, which indicates that catalysts still maintain good selectivity and activity after recycling. The structure of the acidic ionic liquid [$HSO_3$pmim]Br was characterized with IR, and it was found that [$HSO_3$pmim]Br had stronger acidity than other ionic liquid.