• Title/Summary/Keyword: Catalyst configuration

Search Result 45, Processing Time 0.038 seconds

Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor (나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향)

  • Hong, Sung-Jei;Isshiki Minoru;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.

NUMERICAL STUDY ON THE EROSION CHARACTERISTICS OF SCR CATALYST DUCT BY VARYING ITS GEOMETRICAL CONFIGURATION (SCR 촉매층 형상변화에 따른 침식특성에 관한 수치해석적 연구)

  • Park, Hun-Chae;Choi, Hang-Seok;Choi, Yeon-Seok
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2011
  • The SCR catalyst in coal-fired power plant is eroded by the collision of fly ash on the catalyst surface. However the erosion of SCR catalyst by the collision of fly ash has not been fully studied, especially in terms of fluid dynamics. Hence, in the present study, we focus on the gas and solid flows inside the SCR catalyst duct and their consequent effect on the erosion characteristics. For this purpose, computational fluid dynamics is applied to investigate the two-phase flows and to evaluate the erosion rate for different flow and particle injection conditions. Also, the erosion rate and pressure drop of commonly used square shape are compared with equilateral triangle and hexagon shapes. The pressure drop of SCR catalyst is increased when SCR catalyst surface area per unit volume increases. The erosion rate of SCR catalyst is enhanced when the particle velocity, mass flow rate of particle, particle diameter and cell density of SCR catalyst are increased. From the results, the pressure drop and erosion rate at the catalyst surface can be minimized by reducing cell density of SCR catalyst to decrease particle velocity and number of particle impacts.

Geometrically Inhomogeneous Random Configuration Effects of Pt/C Catalysts on Catalyst Utilization in PEM Fuel Cells (연료전지 촉매층 내 촉매활성도에 대한 탄소지지 백금 촉매의 기하학적 비등방성 효과에 관한 연구)

  • Shin, Seungho;Kim, Ah-Reum;Jung, Hye-Mi;Um, Sukkee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.955-965
    • /
    • 2014
  • Transport phenomena of reactant and product are directly linked to intrinsic inhomogeneous random configurations of catalyst layer (CL) that consist of ionomer, carbon-supported catalyst (Pt/C), and pores. Hence, electrochemically active surface area (ECSA) of Pt/C is dominated by geometrical morphology of mass transport path. Undoubtedly these ECSAs are key factor of total fuel cell efficiency. In this study, non-deterministic micro-scale CLs were randomly generated by Monte Carlo method and implemented with the percolation process. To ensure valid inference about Pt/C catalyst utilization, 600 samples were chosen as the number of necessary samples with 95% confidence level. Statistic results of 600 samples generated under particular condition (20vol% Pt/C, 30vol% ionomer, 50vol% pore, and 20nm particle diameter) reveal only 18.2%~81.0% of Pt/C can construct ECSAs with mean value of 53.8%. This study indicates that the catalyst utilization in fuel cell CLs cannot be identical notwithstanding the same design condition.

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.266-271
    • /
    • 2005
  • An experimental investigation of a microthruster using hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a catalytic reaction chamber. Silver was reduced in $H_2$ environment at $500^{\circ}C$. The catalytic reaction chamber was tested to determine the optimum configuration of the catalyst bed. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. The conversion rate was measured with various residence time, catalyst bed temperature, catalytic coated area.

  • PDF

Development of Click Chemistry in Polymerization and Applications of Click Polymer

  • Karim, Md. Anwarul
    • Rubber Technology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Click chemistry had enjoyed a wealthy decade after it was introduced by K.B.Sharpless and his co-worker on 2001. Since there is no optimized method for synthesis of click polymer, therefore, this paper introduced three click reaction methods such as catalyst, non-catalyst and azide-end capping for fluorene-based functional click polymers. The obtained polymers have reasonable molecular weight with narrow PDI. The polymers are thermally stable and almost emitted blue light emission. The synthesized fluorene-based functional click polymers were characterized to compare the effect of click reaction methods on polymer electro-optical properties as well as device performance on quasi-solid-state dye sensitized solar cells (DSSCs) applications. The DSSCs with configuration of $SnO_2:F/TiO_2/N719$ dye/quasi-solid-state electrolyte/Pt devices were fabricated using these click polymers as a solid-state electrolyte components. Among the devices, the catalyzed click polymer composed device exhibited a high power conversion efficiency of 4.62% under AM 1.5G illumination ($100mW/cm^2$).These click polymers are promising materials in device application and $Cu^I$-catalyst 1, 3-dipolar cycloaddition click reaction is an efficient synthetic methodology.

  • PDF

Comparison of stabilities in carbon nanotubes grown on a submicron-sized tip in terms of various buffer and catalyst materials (미세크기 팁 위에 성장된 탄소 나노튜브의 완충막 및 촉매 금속에 따른 안정성 비교)

  • Kim, Jong-Pil;Kim, Young-Kwang;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1224-1225
    • /
    • 2008
  • The results of the experiment that was conducted on the electron emission property and the long-term stability of the emission current in various carbon nanotubes (CNTs)-based field emitters with a CNT/catalyst/buffer/W-tip configuration are presented herein. CNT-based field emitters were fabricated by varying the (TiN, Al/Ni/TiN) buffer layer and the (Ni, Co) catalyst material. This study aimed to elucidate how the buffer layers and catalyst materials affect the structural properties of CNTs and the long-term stability of CNT emitters. Raman spectroscopy, field emission SEM, and high-resolution TEM were used to analyze the crystalline structure, surface morphologies, and nanostructures of all the grown CNTs. X-ray photoelectron spectroscopy (XPS) was used to monitor the chemical bonds of all the buffer layers and catalysts. Electron emission measurement and a long-term (up to 40h) stability test were carried out using a compactly designed field emission measurement system.

  • PDF

The Analysis of the Pressure Fluctuation in the Exhaust System According to the Assistant Device Configuration (보조기구의 형상 변경에 따른 배기계에서의 압력 변동 분석)

  • Chung, Sung-Won;Sim, Kook-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.325-331
    • /
    • 2003
  • This paper described the characteristics of the exhaust pressure and proposed the assistant device for detection of misfired cylinder. Misfire, one of abnormal combustion, affects a bad influence of the 3-way catalyst and emits unburned hydrocarbon. Therefore, to prevent these unusual phenomena and eliminate the factor of the environmental pollution, early detection and correction of the misfired cylinder play a very important role. The configuration of assistant device was changed by length and diameter of pipe and analyzed with the install position on the exhaust system. Experimental results showed that the configuration of assistant device is not affected more than length and diameter of pipe and the assistant device is be effective in the detection of misfired cylinder on the gasoline engine.

  • PDF

Diastereomeric Strain-Promoted Azide-Alkyne Cycloaddition: determination of configuration with the 2D NMR techniques

  • Hye Jin Jeong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.10-15
    • /
    • 2023
  • The Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) is a powerful method for synthesizing triazoles, even under physiological conditions, without a copper catalyst. This technique provides an efficient means for everyone to synthesize complex triazole derivatives rapidly. In order to investigate the configuration of triazole derivatives using bicyclo[6.1.0.]-nonyne (BCN) and chiral azide, it is necessary to employ the 2D NMR. Both 1D and 2D NMR (COSY, HSQC, 15N HMBC) are used to analyze the complex triazole product containing cyclooctyne, a diastereomeric product. The stereometric difference of the proton bonded to the same carbon is determined through the HSQC assignment. The intriguing splitting pattern of carbon resonances also reveals their diastereomeric configuration and will aid in further research based on physiological knowledge.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation (코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계)

  • Lee, Jongwon;Han, Myungwan;Kim, Beomsik
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.176-185
    • /
    • 2018
  • As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.