• Title/Summary/Keyword: Catalyst Capacity

Search Result 129, Processing Time 0.027 seconds

An Experimental Study on Determination of Capacity of Catalysts in 2 -Catalyst System (2-촉매 시스템에서의 촉매 용량 결정에 대한 실험적 연구)

  • Ko, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2003
  • There are various method for the LEV(Low Emission Vehicle) regulation, but 2-catalyst system using one catalyst near exhaust manifold and another catalyst underfloor, is the most popular. This system uses the proven catalyst technology and doesn't use energy. But it is difficult to determine capacity of the two catalysts. So an optimization method to determine the capacity has been proposed by other researcher. It uses the fact that emission decreases with capacity increasing, but the decreasing ratio slows down in high capacity range. It means that the emission and capacity of catalyst is exponentially decreasing relation. In this paper this method will be verified with various experiments. And this method was proven to be very useful to determine the capacity of two catalysts system.

  • PDF

Optimization of Thruster Catalyst Beds using Catalytic Decomposition Modeling of Hydrogen Peroxide (과산화수소 촉매분해 모델링을 이용한 추력기 촉매대 최적설계)

  • Jung, Sangwoo;Choi, Sukmin;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.746-752
    • /
    • 2017
  • High test hydrogen peroxide has been widely developed as green propellant for thrusters. Hydrogen peroxide is decomposed in the catalyst bed to produce the thrust. Catalyst bed design optimization is considered through existing model for catalyst beds. To verify the model, static firing tests were conducted under various conditions using a 100 N scale $H_2O_2$ monopropellant thruster. Temperature and pressure estimations from the model were well correlated to the experimental data. The model is used to obtain optimal design parameters by analyzing the catalyst capacity and pressure drop data for various simulated conditions. Catalyst beds can be optimized from the analysis of the catalyst capacity and pressure drop correlation through catalyst bed modeling.

  • PDF

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

Studies on the Activity Properties of Pd-only Three-Way Catalyst for the Purification of Automobile Exhaust Emissions (자동차 배기가스 정화용 Pb-only 삼원촉매의 활성특성에 관한 연구)

  • 신병선;김상수;이길우;정명근;배재호;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.667-676
    • /
    • 1999
  • The roles of ceria on three-way catalyst is to improve the noble metal dispersion and thermal stability of support ${\gamma}$-$Al_2O_3$. And, ceria has a oxygen storage capacity(OSC) under fuel rich/lean conditions to improve the operating windows of NOx, THC and CO conversion. However, ceria has weak thermal stability under high temperature due to the crystallite growth. So that, the OSC of ceria is decreased, and then the conversions of NOx, THC and CO is decreased. One way of enhancing the thermal stability and NOx, THC and CO conversion Pd-only catalyst is to improve as well as its thermal stability and oxygen storage capacity of the ceria. Especially, the appropriate mixing ratios of bulk and stabilized ceria are very important for designing principles of Pd-only three-way catalysts. In this paper, we discussed the thermal properties of stabilizedand unstabilized (bulk) ceria, and the oxygen storage capacity (OSC) of catalysts, and found the correlation between activity and the OSC of Pd-only catalysts with various different mixing ratios of bulk and stabilized ceria. Finally, we propose the design principles to improve the thermal stability of washcoated Pd-only catalysts.

  • PDF

Reduction of nitrate in groundwater by hematite supported bimetallic catalyst

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • In this study, nitrate reduction of real groundwater sample by 2.2%Cu-1.6%Pd-hematite catalyst was evaluated at different nitrate concentrations, catalyst concentrations, and recycling. Results show that the nitrate reduction is improved by increasing the catalyst concentration. Specific nitrate removal by 2.2%Cu-1.6%Pd-hematite increased linearly with the increase of nitrate concentration showing that the catalyst possesses significantly higher reduction capacity. More than 95% nitrate reduction was observed over five recycles by 2.2%Cu-1.6%Pd-hematite with ~56% nitrogen selectivity in all recycling batches. The results from this study indicate that stable reduction of nitrate in groundwater can be achieved by 2.2%Cu-1.6%Pd-hematite over the wide range of initial nitrate inputs.

Trimerization of Isobutene over Solid Acid Catalysts under Wide Reaction Conditions

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Kim, Tae-Jin;Lee, Hee-Du;Jang, Nak-Han;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2075-2078
    • /
    • 2007
  • Oligomerization of isobutene has been investigated using a few solid acid catalysts in order to produce efficiently triisobutenes that are useful chemical feedstocks for heavy alkylates and neo-acids. Several reaction conditions such as space velocity and isobutene concentration are evaluated, and a few cation exchange resins with various acid capacities were compared in the reaction. High trimers selectivity and high conversion can be obtained over a catalyst containing high acid capacity at low space velocity and relatively low isobutene concentration. The stability of a catalyst for the reaction is high when the acid capacity of the catalyst is high (for example Amberlyst-35).

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries ($MnO_2$입자 크기에 따른 아연공기전지의 특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1129-1131
    • /
    • 2002
  • Zinc Air battery obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. When Zinc Air battery discharged by low rate current discharge voltage profile has very flat pattern until end of voltage. But, when Zinc Air battery discharged by high rate current discharge voltage and capacity become lower. Therefore, we focused on effects of catalyst size in cathode. So we examined performance of zinc air batteries, average discharge voltage, capacity, energy, resistance. And we also obtained resistance by the GSM pulse discharge. So we have got optimum size of catalyst for Zinc Air battery.

  • PDF

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

A Study on Pt-Na/CeO2 Catalysts for Single Stage Water Gas Shift Reaction (Single stage WGS 반응용 Pt-Na/CeO2 촉매 연구)

  • Jeong, Dae-Woon;Shim, Jae-Oh;Jang, Won-Jun;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • Na promoted Pt/$CeO_2$ catalysts with various Na amounts (1, 2, and 3wt%) have been applied to water gas shift reaction (WGS) at a gas hourly space velocity (GHSV) of 45515 $h^{-1}$. 1wt%Pt-2wt%Na/$CeO_2$ catalyst exhibited the highest WGS activity at $240^{\circ}C$ among the catalysts prepared in this study. In addition, 1wt%Pt-2wt%Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity/stability of 1wt%Pt-2wt%Na/$CeO_2$ catalyst was correlated to its easier reducibility and higher oxygen storage capacity (OSC). As a result, 2wt% Na promoted Pt/$CeO_2$ can be a promising candidate catalyst for the single stage WGS, which requires high intrinsic activity at very high GHSV.