• Title/Summary/Keyword: Castings

Search Result 279, Processing Time 0.02 seconds

A Water Model Study on Molten Metal Flow in Die Cavity of Die Casting (다이캐스트 주물의 금형공동내에서 탕류에 관한 수모델적 연구)

  • Kim, Myung-Jae;Choi, Hee-Ho;Cho, Nam-Don
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.576-589
    • /
    • 1994
  • Water modeling experiments and computer simulation for the predictions of defects of die castings are very important to produce high quality castings with less cost. The relation between the variable air vent system and the characteristics of the fluid flow in the die cavity is studied by using water modeling tests, which give ideas on reasonable designing of die cavity, vent arrangement and gating system. In order to test the water modeling, injection is done by using water containing NaCl. Flow behaviors in cavities are visualized by high speed camera and video tape recorder, and local filling time is measured with electrode sensors. Special attention is paid to the configuration of die cavity. Simulated results by computer are examined and compared with the results of water modeling experiments. There are close correlations between the simulated results and water modeling ones.

  • PDF

Development of High Quality Die Casting Technology with Function to Purify Molten Metal (용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발)

  • Hatano, Tomoyuki;Takagi, Hiromi;Inagaki, Mitsugi
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.

Effects of Casting Variables and Alloying Elements on the Fluidity of Thin Wall Stainless Steel Castings (박육 스테인리스 주강의 유동성에 미치는 주조변수 및 합금원소의 영향)

  • Choi, Hak-Kyu;Kang, Sang-Kyu;Park, Heung-Il;Jeong, Hae-Yong;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.336-343
    • /
    • 2000
  • The effects of casting variables and alloying elements on the fluidity of thin wall cast stainless steels were investigated. Melts were poured into the sand molds to produce thin wall test castings. The length of it was 245 mm and the thickness varied at the interval of 0.5 in the range of 1.6 to 2.6 mm. For the same casting condition, the fluidities of austenitic stainless steel, ferritic, precipitation hardenable and martensite ones were better in the order. The higher the pouring temperature, the shorter the pouring rate and the better the fluidity were. The fluidity was increased with the addition of Cr and decreased with W and Nb.

  • PDF