• Title/Summary/Keyword: Casting Technique

Search Result 277, Processing Time 0.022 seconds

CERAMIC INLAY RESTORATIONS OF POSTERIOR TEETH

  • Jin, Myung-Uk;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.235-237
    • /
    • 2001
  • ;Dentistry has benefited from tremendous advances in technology with the introduction of new techniques and materials, and patients are aware that esthetic approaches in dentistry can change one's appearance. Increasingly. tooth-colored restorative materials have been used for restoration of posterior teeth. Tooth-colored restoration for posterior teeth can be divided into three categories: 1) the direct techniques that can be made in a single appointment and are an intraoral procedure utilizing composites: 2) the semidirect techniques that require both an intraoral and an extraoral procedure and are luted chairside utilizing composites: and 3) the indirect techniques that require several appointments and the expertise of a dental technician working with either composites or ceramics. But, resin restoration has inherent drawbacks of microleakage. polymerization shrinkage, thermal cycling problems. and wear in stress-bearing areas. On the other hand, Ceramic restorations have many advantages over resin restorations. Ceramic inlays are reported to have less leakage than resin restoration and to fit better. although marginal fidelity depends on technique and is laboratory dependent. Adhesion of luting resin is more reliable and durable to etched ceramic material than to treated resin composite. In view of color matching, periodontal health. resistance to abrasion, ceramic restoration is superior to resin restorationl. Materials which have been used for the fabrication of ceramic restorations are various. Conventional powder slurry ceramics are also available. Castable ceramics are produced by centrifugal casting of heat-treated glass ceramics. and machinable ceramics are feldspathic porcelains or cast glass ceramics which are milled using a CAD/CAM apparatus to produce inlays (for example, Cered. They may also be copy milled using the Celay apparatus. Pressable ceramics are produced from feldspathic porcelain which is supplied in ingot form and heated and moulded under pressure to produce a restoration. Infiltrated ceramics are another class of material which are available for use as ceramic inlays. An example is $In-Ceram^{\circledR}$(Vident. California, USA) which consists of a porous aluminum oxide or spinell core infiltrated with glass and subsequently veneered with feldspathic porcelain. In the 1980s. the development of compatible refractory materials made fabrication easier. and the development of adhesive resin cements greatly improved clinical success rates. This case report presents esthetic ceramic inlays for posterior teeth.teeth.

  • PDF

Compositions and Characteristics on the Glass Beads Excavated from Ancient Tombs of Jeongchon in Naju, Korea (나주 정촌 고분군 출토 유리구슬의 화학 조성과 특징)

  • Yun, Ji Hyeon;Han, Woo Rim;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.119-128
    • /
    • 2018
  • This study revealed the material composition and characteristics of 19 glass fragments excavated from stone chamber No. 1 of Jeongchon Tomb in Naju through chemical composition analyses and observations. These characteristics were compared with the characteristics of the glass fragments excavated from No. 3 tomb of Bogam-ri in Naju. The purpose of this study was to identify the characteristics of the ancient glass of the Mahan-Baekje period. The glass fragments excavated from the Jeongchon Tombs can be classified into purplish blue, light-purplish blue, greenish blue, green, and mixture of purple blue and purple, based on their color. These beads were made using a drawn and casting technique. In addition, blue glass fragments were primarily excavated form No. 3 tomb of Bogam-ri. However, red glass fragments were not excavated from either of the tombs. According to chemical composition analyses, soda glass group and potash glass group were common in both the tombs. Additionally, alkali mixed glass group and lead barium glass group were excavated from Jeongchon Tombs and No. 3 tomb of Bogam-ri, respectively. The glass fragments excavated from No. 3 tomb of Bogam-ri have more color variations than those excavated from Jeongchon Tombs.

A Study on Shear Bond Strength of Heat Press Ceramic to Non Precious Porcelain Metal (도재용착용 비귀금속과 열가압성형도재의 전단결합강도 연구)

  • Kim, Seong-Soo;Kim, Wook-Tae;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Purpose: Heat pressed ceramics, used for all ceramic restorations, have the additional advantage of being technically less change through using of the lost-wax technique. Conceptually, combining the ceramic with the clinically proven reinforcing ability of a metal framework would be advantageous; however, cause of mismatching of fusion between ceramics and metal frameworks which from differences of casting temperature and coefficient of thermal expansion, pressed ceramics could not be used with a metal framework. The purpose of this study was to compare shear bond strength of press-to metal ceramic to porcelain fused non precious metal and feldspatic porcelain fused non precious metal. Methods: The 30 metal specimens were casted in a porcelain fused non precious metal nickel-chromium alloy. They were divided into 3 groups by surface treatment and applied ceramic: $125{\mu}m$ aluminium oxide sandblasting and veneered feldspatic porcelain (group FP), $125{\mu}m$ aluminium oxide sandblasting and had press-to-metal ceramic applied (group PC), porcelain bonder (gold bonder) fused on surface of metal specimens and had press-to-metal ceramic applied (group PCG). In each group 10 metal specimens were used. The press-to-metal ceramic applied 20 specimens had ash-free wax pattern applied, the metal-wax complexes invested, and were pressed with heat press ceramic. All specimens were subjected to shear bond strength test at a crosshead speed of 1.0 mm/min. Results: The results of measured in Mean SD and data were analyzed by one-way AVOVA (p= .05) and Tukey HSD test (p= .05).: group FP $16.090{\pm}1.841$ MPa, group PC $12.620{\pm}1.8256$ MPa, group PCG $10.920{\pm}0.9283$, significant differences between all groups (p < .05). Significant differences were found in each between group FP and group PC, group FP and group PCG (p < .05). Conclusion: The shear bond strength of press-to-metal ceramic to porcelain fused non precious metal was described higher in unused gold bonder group than used gold bonder groups.

Bronze Production Technology in the Early Iron Age: A comparative study of bronze artifacts recovered from the Hoam-dong site in Chungju and Chongsong-ri in Buyeo (초기철기시대 청동기의 제작기술 - 충주 호암동유적과 부여 청송리유적 출토 청동기의 비교 연구-)

  • Han, Woorim;Hwang, Jinju;Kim, Sojin
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.4
    • /
    • pp.224-233
    • /
    • 2018
  • Thirty-three Early Iron Age bronzes at the sites of Hoam-dong in Chungju and Cheongsong-ri in Buyeo were investigated in order to study the manufacturing technique and the provenance of lead. Chemical analysis using X-ray fluorescence showed that 33 bronzes consist of copper(Cu), tin(Sn) and lead(Pb) served as major elements. Major and minor elemental analyses by EPMA were performed on two mirrors and 2 weapons of the bronzes investigated. The results shows that bronze mirrors from Chungju and Buyeo were high-tin bronzes(> 30 wt%). And 20% of tin and 5% of lead were founded in bronze weapons. Iron, zinc, arsenic, silver, nickel, sulfur and cobalt detected in four bronzes as minor and trace elements. The four bronzes were alloyed considering their function and were not heat treated after casting due to their high tin content. Lead isotope analysis using TIMS indicates that thirty-three bronzes were distributed southern Korea peninsula except Zone 1. As a result, lead raw materials came from various regions in Korean Peninsula not from Gyeongsang-do regions. The manufacturing techniques of bronze ware generalized at this age, and bronze was produced in various sites using raw materials from various sources.

Manufacturing Technology and Provenance of the Lead Beads (납환의 제작방법 및 납동위원소비 특성 연구)

  • Kim, So-jin;Hwang, Jin-ju;Han, Woo-rim;Lee, Eun- woo;Rim, Seok-gyu;Jeong, Youn-joong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.48-57
    • /
    • 2014
  • More than 30 lead beads have been excavated from buddhist temples and sites but the production times are unknown the origin. The aim of this study is to estimate manufacturing technique and provenance of 11 beads through the chemical composition and isotope analysis. Results shows that the lead beads are composed of high-purity lead and cast using for 2 semicircle moulds. Furthermore, 11 lead beads are similar in size, chemical composition and casting methods. Lead isotope analysis data suggest that the provenance of lead beads are not Korea peninsula. Also it is estimated that 11 lead beads were divided in 2 groups considering the time and places of production. The future works will be executed additional scientific analysis and historical background due to confirm the manufacturing system and provenance.

A Study on Conservation and Manufacturing Techniques of a Seated Avalokiteshvara with a Thousand Hands of Goryeo Dynasty (고려시대 금동제십일면천수관음보살좌상의 보존처리 및 제작기술 연구)

  • Gwak, Hong In;Kwon, Mi Hye
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.253-258
    • /
    • 2019
  • The gilt bronze statue, Seated Avalokiteshvara with a Thousand Hands, of the Goryeo dynasty, is the only one in Korea of its kind that has undergone a conservation process for the special exhibition entitled GORYEO: The Glory of Korea. For the conservation treatment, first, a component analysis (XRF) was conducted, and a manufacturing technique (CT) was analyzed. The results of the investigation revealed that the statue was alloyed with Cu, Sn, and Pb ternary bronze. Its surface, except for the detached plating layers, was originally plated using the mercury amalgam method. This statue was assembled after separately casting each part of the body, such as the left and right arms and the wrists, including the hands, with objects. In particular, each wrist was cast and fitted with a metal nail to express each object in the hands more precisely. Inside the statue, there were five iron cores: two for the head, one for the left elbow, one for the right flank, and one for the right waist. For the preservative treatment, natural adhesive agents, including vegetable gelatin and glue (20%), were mixed with alcohol to protect the base metal and adhere to the plating layers. Using synthetic resin (CDK 520+SN-sheet) for the damaged parts, the restored parts could be attached and detached to/from the statue. Eventually, the compositional analysis and conservation treatment left the statue in a stable condition and ready for exhibitions and future studies.

Manufacturing Technique and Conservation of Bigyeokjincheolloe Bomb Shells Excavated from the Ancient Local Government Office and Fortress of Mujang-hyeon, Gochang (고창 무장현 관아와 읍성 출토 비격진천뢰의 제작기법과 보존처리)

  • Kim, Haesol;Huh, Ilkwon
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.17-36
    • /
    • 2020
  • This paper describes the consevation treatment of eleven bigyeokjincheolloe bomb shells that were excavated from the Joseon-period local government office and fortress of Mujang-hyeon (present-day Mujang-myeon) in Gochang in 2018. It also provides information on the production method of the shells revealed through CT scanning, gamma-ray transmission imaging, and metallographic analysis. In preparation for the special exhibition "Bigyeokjincheolloe" at the Jinju National Museum in 2019 (July 16 to August 25), contaminants were removed from the shells and their surface was reinforced during the first phase of conservation treatment. Furthermore, the closures for the shells were identified for the first time. Regarding the production of the shells, the CT scanning and gamma-ray transmission imaging identified many blowholes in the interior of the body and the use of a chaplet on the side of one shell. The side of the body proved to be relatively thinner than the top and bottom. The traces of a hole for pouring molten metal into the center of the bottom indicates that molten metal was indeed emptied into the inverted body. In the metallographic analysis of two of the bodies and one lid, cementite and pearlite structures were identified on the body, indicating that it was made by casting. The presence of the ferrite structure with a partial distribution of the pearlite along with non-metallic inclusion in the lid suggested that the lid was made by forging.

Removable implant-supported partial denture using milled bar with Locator® attachments in a cleft lip & palate patient: A clinical report (구순구개열 환자에서 Locator® 유지장치가 장착된 milled titanium bar를 이용한 가철성 임플란트 피개 국소의치의 보철수복증례)

  • Yang, Sang-Hyun;Kim, Kyoung-A;Kim, Ja-Yeong;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • Due to the limitations of conventional removable partial denture prostheses to treat a cleft lip & palate patient who shows scar tissue on upper lip, excessive absorption of the maxillary residual alveolar ridge, and class III malocclusion with narrow palate and undergrowth of the maxilla, 4 implants were placed on the maxillary edentulous region and a maxillary removable implant-supported partial denture was planned using a CAD/CAM milled titanium bar. Unlike metal or gold casting technique which has shrinkage after the molding, CAD/CAM milled titanium bar is highly-precise, economical and lightweight. In practice, however, it is very hard to obtain accurate friction-fit from the milled bar and reduction in retention can occur due to repetitive insertion and removal of the denture. Various auxiliary retention systems (e.g. $ERA^{(R)}$, $CEKA^{(R)}$, magnetics, $Locator^{(R)}$ attachment), in order to deal with these problems, can be used to obtain additional retention, cost-effectiveness and ease of replacement. Out of diverse auxiliary attachments, $Locator^{(R)}$ has characteristics that are dual retentive, minimal in vertical height and convenient of attachment replacement. Drill and tapping method is simple and the replacement of the metal female part of $Locator^{(R)}$ attachment is convenient. In this case, the $Locator^{(R)}$ attachment is connected to the milled titanium bar fabricated by CAD/CAM, using the drill and tapping technique. Afterward, screw holes were formed and 3 $Locator^{(R)}$ attachments were secured with 20 Ncm holding force for additional retention. Following this procedure, satisfactory results were obtained in terms of aesthetic facial form, masticatory function and denture retention, and I hereby report this case.

A Study of the Golden Royal Seals Made by the Directorate for the Restoration of the Golden Royal Seals(金寶改造都監) in 1705 (1705년 금보개조도감(金寶改造都監) 제작 금보 연구)

  • Je, Ji-Hyeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.1
    • /
    • pp.42-57
    • /
    • 2017
  • The Joseon Dynasty (1392~1910) had a long tradition of making official seals to commemorate the granting of official royal titles, including posthumous honorary titles, to its kings, queens, crown princes and queen dowagers. These royal seals were typically gold-plated or made of jade. After the death of its holder, each seal would be stored in the royal seal depository in the Royal Ancestral Shrine. Extensive efforts were made to restore the traditions and culture of the royal family of Joseon during the reign of King Sukjong (r. 1674~1720). In 1705, discussions were held about the royal ceremonial objects, including the royal seals, stored in the Royal Ancestral Shrine, resulting in the reproduction of a set of accessories related with the storage of royal seals and ten golden royal seals which had been lost during wars or had yet to be made. With these reproductions, each shrine chamber of the Royal Ancestral Shrine would have had at least one seal. The details of the reproduction project were meticulously recorded in The Royal Protocol by the Directorate for the Restoration of Golden Royal Seals("金寶改造都監儀軌"). Given that the restoration project was the single event that led to the reproduction of all the golden royal seals, it is reasonable to conclude that the directorate had fulfilled a historically significant function. In this study, the main discussion is focused on the establishment of the directorate and the storage and management of the damaged royal seals. The discussion includes the manufacturing process of the golden seals, for which The Royal Protocol is compared with other similar documents in order to gain more detailed knowledge of the measurements of the turtle knob, the lost-wax casting technique, the gold plating with mercury amalgamation technique, and other ornamentation techniques. The discussion also covers the activities of the artisans who made the royal seals, based on a study of the royal protocols; the styles of the artifacts, based on an examination of the remaining examples; and the techniques used by the Directorate for the Restoration of Golden Royal Seals to produce the royal seals in 1705.

Technological Diversities Observed in Bronze Objects of the Late Goryo Period - Case Study on the Bronze Bowls Excavated from the Burial Complex at Deobu-gol in Goyang - (고려 말 청동용기에 적용된 제작기술의 다양성 연구 - 고양 더부골 고분군 출토 청동용기를 중심으로 -)

  • Jeon, Ik Hwan;Lee, Jae Sung;Park, Jang Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.208-227
    • /
    • 2013
  • Twenty-seven bronze bowls excavated from the Goryo burial complex at Deobu-gol were examined for their microstructure and chemical composition to characterize the bronze technology practiced by commoners at the time. Results showed that the objects examined can be classified into four groups: 1) objects forged out of Cu-near 22%Sn alloys and then quenched; 2) objects cast from Cu-below 10% Sn alloys containing lead; 3) objects cast from Cu-10%~20% Sn alloys containing lead and then quenched; 4) objects forged out of Cu-10~20% Sn alloys containing lead and then quenched. This study revealed that the fabrication technique as determined by alloy compositions plays an important role in bronze technology. The use of lead was clearly associated with the selection of quenching temperatures, the character of inclusions and the color characteristics of bronze surfaces. It was found that the objects containing lead were quenched at temperatures of $520^{\circ}{\sim}586^{\circ}C$ while those without lead were quenched at the range of $586^{\circ}{\sim}799^{\circ}C$. The presence of selenium in impurity inclusions was detected only in alloys containing lead, suggesting that the raw materials, Cu and Sn, used in making the lead-free alloys for the first group were carefully selected from those smelted using ores without lead contamination. Furthermore, the addition of lead was found to have significant effects on the color characteristics of the surface of bronze alloys when they are subjected to corrosion during interment. In leaded alloys, corrosion turns the surface light green or dark green while in unleaded alloys, corrosion turns the surface dark brown or black. It was found that in fabrication, the wall thickness of the bronze bowls varies depending on the application of quenching; most of the quenched objects have walls 1mm thick or below while those without quenching have walls 1mm thick or above. Fabrication techniques in bronze making usually reflect social environments of a community. It is likely that in the late Goryo period, experiencing lack of skilled bronze workers, the increased demand for bronze was met in two ways; by the use of chief lead instead of expensive tin and by the use of casting suitable for mass production. The above results show that the Goryo bronze workers tried to overcome such a resource-limited environment through technological innovations as apparent in the use of varying fabrication techniques for different alloys. Recently, numerous bronze objects are excavated and available for investigation. This study shows that with the use of proper analytical techniques they can serve as a valuable source of information required for the characterization of the associated technology as well as the social environment leading to the establishment of such technology.