• Title/Summary/Keyword: Casting Process

Search Result 1,130, Processing Time 0.024 seconds

Development of the Metal Casting Process Management System Based on Touch Screen (터치 스크린 기반 금속 주조 공정 관리 시스템 개발)

  • Kim, Jung-Sook;Kim, Jae-Hyeong;Jeong, Jun-Ho;Chung, Jang-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.244-248
    • /
    • 2013
  • In this paper, we describe the smart metal casting processing management system, in which we applied case-based reasoning on the window environment. Metal casting is one of the most common casting processes. The metal casting processing is complex and variable depends on a kind of metal casting products. Especially, the metal casting industry has a feature which produces small quantities but produces a lot of different types of metal casting products. And we developed the smart metal casting processing management system which could show the processing route according to the product cases intelligently using the result of case-based reasoning. The experimental result shows that our metal casting processing management system schemes achieves more productivity than manual management schemes.

A Study on Quality Control Using Data Mining in Steel Continuous Casting Process (철강 연주공정에서 데이터마이닝을 이용한 품질제어 방법에 관한 연구)

  • Kim, Jae-Kyeong;Kwon, Taeck-Sung;Choi, Il-Young;Kim, Hyea-Kyeong;Kim, Min-Yong
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.113-126
    • /
    • 2011
  • The smelting and the continuous casting of steel are important processes that determine the quality of steel products. Especially most of quality defects occur during solidification of the steel continuous casting process. Although quality control techniques such as six sigma, SQC, and TQM can be applied to the continuous casting process for improving quality of steel products, these techniques don't provide real-time analysis to identify the causes of defect occurrence. To solve problems, we have developed a detection model using decision tree which identified abnormal transactions to have a coarse grain structure. And we have compared the proposed model with models using neural network and logistic regression. Experiments on steel data showed that the performance of the proposed model was higher than those of neural network model and logistic regression model. Thus, we expect that the suggested model will be helpful to control the quality of steel products in real-time in the continuous casting process.

Study on Life Evaluation of Die Casting Mold and Selection of Mold Material (다이캐스팅 금형의 내구 수명평가와 금형강 소재 선정에 대한 연구)

  • Kim, Jinho;Hong, Seokmoo;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2013
  • In Die casting process, the problem of die degradation is often issued. In oder to increase of die life the material degradation of die steel was investigated using test core pins. Three test core pins were positioned in front of the gate entry and observed washout and soldering resistance during Mg die casting process. The test parameters are set as different commercial die materials, coatings condition and hardness of die surface. Usign 220t magnesium die casting machine was employed to cast AZ91 magnesium alloys. After 150 shots, macroscopic observation of die surface was carried out. Additional 50 cycles later, test pins were chemically cleaned with 5% HCl aqueous solution to find out the existence of washout and soldering layers. Microstructural characterization of die surface and the die roughness measurement were performed together. Computational simulation using AnyCasting program was also beneficial to correlate the extent of die damage with the position of test pin inside die cavity. As results, the optimal combination of die steel with productive coating as well as its hardness was drawn out. it will be helpful to decide the material and condition considering increasing of tool life.

The Effect of Velocity Control Method on the Part Characteristic in Semi-Solid Die Casting (반용융 다이캐스팅 공정에 있어서 속도제어방법이 제품의 특성에 미치는 영향)

  • Seo, Pan-Ki;Kang, Chung-Gil;Son, Young-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2034-2043
    • /
    • 2002
  • The process design to produce a near net shape home-appliance compressor component using semi-solid die casting process is performed. In order to obtain a good component without defects such as liquid segregation and porosity, the relationship between pressure and time, and plunger tip displacement and injection velocity are proposed with repeated trial and error. The effect of the velocity variation in the process parameters on liquid segregation and extraction is investigated to produce the aluminum frame part(a kind of compressor part) with good mechanical properties. The mechanical characteristic of semi-solid die casting formed parts for AlSi7Mg0.65r(A357) and AlSi17Cu4Mg(A390) are investigated with a view to minimizing the occurrence of defects. To investigate of application possibility at industry field, A380 aluminum alloy with 8∼9% silicon contents used for the squeeze casting process. The obtained mechanical properties is compared with semi-solid die casting.

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • An accident from machine work is often fatal to the worker. This accident is mostly preventable through perfect process jig. In case of this machine work, however, the disaster frequently occurred because of the design which is not considered the beginning of product design, post-process and mass process of production. As for sand casting method, this has the merits of the production; the product is easily produced by manual labor. On the other hand, this method has the demerits of a bigger dimensional error contrary to other mass process of production. When the sand casting product is in machine work, there are various problems such as unsafe fix and excessive cutting, product desorption and rapid life depreciation of equipment and tools. Considering the characteristics of sand casting method, it is accepted as difficulty to improve the problems. In this study, it suggests shell mold method for mold instead of the machine work after the sand casting of the circle shape container product. And the surface accomplishes the following average of surface roughness Ra$9.94{\mu}m$ of machine work with the casting of flask mold by shell mold method. In accordance with the simplification of processing process and reducing the average thickness variation by mass production of product with detailed appearance, it has a good influence on safety accident prevention caused by production and damaged product. It is confirmed that making higher degree of size precision of all machine work product is possible to increase the safety and productivity, reduce the processing process and improve environment.

Machine Learning-based Process Condition Selection Method to Prevent Defects in Korean Traditional Brass Casting (한국 전통 유기 제작에서 결함을 방지하기 위한 기계 학습 기반의 공정 조건 선택 방안)

  • Lee, Seungcheol;Han, Dosuck;Yi, Hyuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In the present study, in order to prevent the misrun defects that occur during traditional brass casting, a method for selecting the proper casting process conditions is proposed. A learning model was developed and demonstrated to be able to learn the presence or absence of defects according to the casting process conditions and to predict the occurrence of defects depending on the certain process given. Appropriate process conditions were determined by applying the proposed method, and the determined conditions were verified through a comparison of different simulation results with additional conditions. With this method, it is possible to determine the casting process conditions that will prevent defects in the desired sand model. This technology is expected to contribute to realization of smart traditional brass farming workshops.

Rapid Tooling (2) : Al Powder Filled Resin Tooling and Its Characteristics (급속금형제작 (2) : 알루미늄 분말 혼합수지를 이용한 간이형 제작과 그 특성)

  • 김범수;임용관;배원병;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.39-45
    • /
    • 1998
  • In the previous study. the powder casting was attempted as the rapid tooling. The powder casting was the process to cast dry powder into the casting mold transferred from R/P model and infiltrate the liquid binder to solidify the powder. And then, the melted copper was infiltrated to control the shrinkage rate of the final mold Conseqently, the shrinkage rate was under 0.1% through that process. The mechanical characteristic was also excellent. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical property of the phenol was not good enough to apply to molds directly. In this study, aluminium powder filled with epoxy is applicated to the slurry casting to solve these problems. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. We achieved a successful result that the shrinkage rate is shortened about 0.047%. Futhermore, the manufacturing time and cost savings are significant. Finally, we assume that the developing possibility of this process is very optimistic.

  • PDF

A Study on the Moulding Analysis of Automobile Valve Body Mid-plate (자동차 밸브바디 중간플레이트 성형해석에 관한 연구)

  • Jang Hun;Sung Back-Sub;Cha Yong-Hoon;Kim Duck-joong;Lee Youn-sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.174-179
    • /
    • 2005
  • In the super slow speed die casting process, the casting defects due to melt flow should be controlled in order to obtain sound casting products. The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. The calculation of simulation can produce very useful and important results. The calculation data of die casting process condition from the computer simulation by the Z-CAST is made to insure that the liquid metal is injected at the right velocity range and that the filling time is small enough to prevent premature solidification. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

A Study on the Filling and Solidification Process During Gravity Casting Using Implicit VOF Method (암시적 VOF법을 이용한 중력주조에서의 충전 및 응고과정에 대한 연구)

  • Im, Ik-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.102-113
    • /
    • 2000
  • In this study, a three-dimensional gravity casting problem has been examined to investigate a coupled phenomenon of the filling and solidification process. This work simultaneously considers the two key phenomena of metal casting : the fluid flow during mold filling, and solidification process. The VOF method is used to analyze the free surface flow during filling and the equivalent specific heat method is employed to model the latent heat release during solidification. The time-implicit filling algorithm is applied to save the computational time for analyzing the mold filling process. The three-dimensional benchmark problem used in the MCWASP VII has been solved using both the implicit and explicit algorithm, and the present results are compared with the benchmark experimental results and the other numerical results.