• 제목/요약/키워드: Casting Al alloy

검색결과 370건 처리시간 0.027초

재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향 (Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap)

  • 성동현;김헌주
    • 한국주조공학회지
    • /
    • 제38권6호
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

수평연속주조한 과공정 Al-Si합금 소경봉의 미세조직 및 기계적성질 (Microstructure and Mechanical Properties of Hypereutectic Al-Si Alloy Bars Processed via Horizontal Continuous Casting)

  • 김완철;박지하;류봉선;박원욱
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.585-591
    • /
    • 1997
  • Hyper-eutectic Al-17.5wt%Si alloy bars of 25 mm in diameter were produced by horizontal continuous casting process. Effect of both casting speed and primary Si refiner (AlCuP) on microstructure and mechanical properties of the alloy have been investigated. With increasing a weight fraction of AlCuP, the average primary Si size decreased down to $20 {\mu}m$. On the contrary, there was no notable changes of microstructure and primary Si size according to the casting speed in the experimental range of this study, indicating that the cooling rate should be increased to optimize and refine microstructure and primary Si size. The experimental results including hardness, tensile strength and wear resistance tests of the processed alloy bars showed a good possibility to develop the high performance wear resistant Al-Si alloy.

  • PDF

진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성 (Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting)

  • 박광훈;박성기;신순기;박영철;이규창;이준희
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향 (Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy)

  • 한요섭;이호인;이재철
    • 한국주조공학회지
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

Sr과 TiB 첨가에 따른 다이캐스팅용 Al-Si 합금의 미세조직과 공정온도의 변화 (Influence of Sr and TiB on the Microstructure and Eutectic Temperature of Al-12Si Die-Cast Alloys)

  • 최용락;김선화;김동현;윤상일;김기선
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.544-551
    • /
    • 2017
  • In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at $660^{\circ}C$. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to $9^{\circ}C$ and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary ${\alpha}$-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.

금형 주조한 마그네슘 합금의 부식 거동에 미치는 Al 및 Sn의 영향 (The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy)

  • 김병호;서재현;박경철
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.36-43
    • /
    • 2015
  • In this study, the influences of aluminum and tin additions (individual and combined) on corrosion behavior of magnesium alloy have been determined. The studied alloys were fabricated by permanent mold casting method to measure the corrosion properties, a potentiodynamic test, hydrogen evolution test and immersion test were carried out in a 3.5% NaCl solution at pH 7.2. From the results of microstructure analysis, the Mg-9Al-1Zn alloy was found to be composed of ${\alpha}$-Mg and rod-like $Mg_{17}Al_{12}$ phase and the Mg-5Sn-5Al-1Zn alloy was found to be composed of ${\alpha}$-Mg, rod-like $Mg_{17}Al_{12}$ and $Mg_2Sn$ phases. In the case of the Mg-9Sn-1Zn alloy, the microstructure was composed of ${\alpha}$-Mg and eutectic $Mg_2Sn$ phase. With Sn addition (individual and combined), the corrosion resistance of the Mg alloys improved.

분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy)

  • 김민수;방원규;박우진;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

소실모형주조공정으로 제조한 Al-Si-Mg계 주조합금의 기계적 성질 및 주형 충전성 (Mechanical Properties and Mold Filling Capability of Al-Si-Mg Casting Alloy Fabricated by Lost Foam Casting Process)

  • 김정민;하태형;최경환
    • 한국주조공학회지
    • /
    • 제36권5호
    • /
    • pp.153-158
    • /
    • 2016
  • The lost foam casting process was used to fabricate Al-Si-Mg cast specimens, and the effects of the chemical composition and process variables on the tensile properties and the mold filling ability were investigated. Some porosity formation was observed in thick sections of the casting and better tensile properties were obtained for thin sections, presumably because of their lower porosity and the higher cooling rate. Tensile properties were not clearly enhanced by grain refining treatment with Ti; however, the elongation was significantly improved by Sr modification of the Al-Si-Mg alloy. The mold filling distance was generally proportional to the pouring temperature of the melt, and the distance was also increased by the addition of Ti.

고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 I (A Study of the Development of a High-Strength Al-Zn Based Alloy for Die Casting I)

  • 신상수;염길용;김억수;임경묵
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.936-941
    • /
    • 2010
  • Al-Zn based alloys are the most common types of wrought Al alloys. Although Al-Zn alloys have high strength, they cannot be applied to a conventional casting process. In this study, Al-Zn-based alloys applicable to a die casting process were developed successfully. The developed Al-45 wt% Zn-based alloys showed a fine equiaxed grain structure and high strength. A fine equiaxed grain having an average size of $25{\mu}m$ was obtained by the die casting process. The UTS and elongation of the new alloy are 475 MPa and ~3.5%, respectively. In addition, we elucidate the effect of a Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al96.3-xZnxCu3Si0.4Fe0.3) x=20, 30, 40, and 45 wt% alloys fabricated by a die casting process.

고강도 고인성 Al-Mg-Zn 주조합금의 미세조직 및 특성 (Microstructure and Properties of High Strength High Ductility Al-Mg-Zn Casting Alloy)

  • 김정민;하태형
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.181-186
    • /
    • 2016
  • The typical microstructure of Al-5%Mg-2%Zn cast alloy mainly consists of an aluminum matrix with a small amount of AlMgZn 2nd phase. The secondary dendrite arm spacing and the grain size of the cast alloy tend to be inversely proportional to the section thickness of casting; however, the tensile properties cannot be said to be clearly related to the cast microstructure. After T6 heat treatment, the tensile strength of the alloy was enhanced significantly. TEM analysis results show that very fine AlMgZn precipitates were formed after the heat treatment. The corrosion resistance, measured according to the corrosion potential, was found to increase slightly after the conducting of heat treatment.