• Title/Summary/Keyword: Casting/Forging

Search Result 99, Processing Time 0.019 seconds

A Study on the characteristics of the cast using forged insert (까단조형 인서트를 이용한 주물재의 특성연구)

  • Yim, H.S.;Park, H.K.;Lee, K.Y.;Kang, Y.K.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.354-357
    • /
    • 2008
  • In this study, the casting process using forged insert was applied to manufacturing a knuckle, in order to prove that application of casting process using forged insert is likely to get the effect of light weight and superior mechanical characteristic compared with existing casting products. Firstly, in the forging experiment, it was confirmed that the optimal configuration of the forged insert could be predicted by FE analysis. And by using FVM (Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the mechanical characteristic of the final casting product, the microstructual observation and hardness test were performed at the boundary zone between forging and casting part.

  • PDF

A Study on the Manufacture of Aluminum Tie-Rod End by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 타이로드 엔드 제조에 관한 연구)

  • Kim, Hyo-Ryang;Seo, Myung-Kyu;You, Min-Su;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.180-185
    • /
    • 2002
  • Aluminum casting/forging process is used to produce an aluminum tie-rod end for the steering system of automobiles. Firstly, casting experiments were carried out to get a good preform for forging the tie-rod end. In the casting experiment, the effects of additives, Ti+B, Zr, Sr, and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. And a finite element analysis was performed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum tie-rod end by using the above cast preform. In the casting experiments, when 0.2% Ti+B and 0.25% Zr were simultaneously added into molten Al-Si alloy, the highest values of tensile strength and elongation of the cast preform were obtained. When 0.04% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform. The highest hardness was obtained when 0.2% Mg was added. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The hardness of a cast/forged product using designed preform was superior to that of required specification.

A Study on the Production of a Compressor Piston for an Automobile Air-Conditioner using Aluminum casting/Forging (알루미늄 주조/단조 공정을 이용한 자동차용 에어컨 컴프레서 피스톤의 생산에 관한 연구)

  • Lee, Sung-Mo;Wang, Shin-Il;Kim, Hyo-Ryang;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.53-59
    • /
    • 2000
  • In this study aluminum casting experiments are carried out to reduce the grain size of a cast preform and to spheriodize its dendritic structure by adding Ti+B and Zr and to modify flaked eutectic silicon by adding Sr, And a finite element simulation is performed to determine an optimal configuration of the cast preform to be used in forging of a compressor piston for an automobile air-conditioner. When 0.15% Ti+B Zr and 0.05% Sr are added respectively into the molten aluminum alloy the finest grain in casting of the preform is obtained. It is confirmed that the optimal configuration of the cast preform predicted by FEM simulation is very useful for forging the compressor piston. After forging the cast preform of the compressor piston. the microstructure and the hardness of the cast preform is compared with those of the cast/forged product.

  • PDF

A Study on Design and Durability Analysis of Vertical Multi-Jointed Robot with Translational Joint to adapt in the High Temperature Environment (고온 환경에서 적용 가능한 병진관절을 갖는 수직 다관절 로봇시스템 개발 및 내구성 분석에 관한 연구)

  • Kim, Du-Beum;Kim, Hui-Jin;Bae, Ho-Young;Kim, Sang-Hyun;Im, O-Duek;Han, Sung-Hyun;Kang, Jung-Seok;Noh, Sung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2019
  • We Proposed a new technology to develop vertical type multi-joint robot system enable to adapt in high temperature environment. The main contents is a new approach to design a vertical type articulated robot with prismatic joint and analysis of thermal for process automation of casting and forging. The proposed robot is suitable to use handling working parts of casting and forging. for the manufacturing process of forging and casting. The reliability is illustrated that the proposed technique is more stable and robust than the conventional system. This study is concerned with an analytical methodology of kinematic computation for 7 DOF manipulators for optimization of forging manufacturing process.

Manufacturing of Product by Semi-Solid Forging (반용융 단조품의 제조)

  • Park, Hyung-Jin;Kang, Chung-Gil;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF

A study on the Microstructural Changes with Modification and Cast-forging in Hypoeutectic Al-Si Alloys (아공정 Al-Si 합금의 개량처리와 주단조에 의한 조직변화에 관한 연구)

  • Yoon, Ji-Hyun;Seol, Eun-Cheol;Kim, Eok-Soo;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.26-34
    • /
    • 2002
  • For application of cast-forging process with Al-Si alloys, casting experiments are carried out by adding Sr and TiB to Al-Si alloys for grain refinement treatment. We experimented on the mechanical properties according to microstructural changes, forging ability test and also investigated the mechanical properties after forging. The finest microstructure could be observed respectively when 0.05 wt.%Sr and 0.1 wt.%TiB were added. In this case, tensile strength and elongation increased much more than as casting. After high temperature deformation simulation test with grain refinement specimens was carried out, about 60N per unit $area(mm^2)$ of specimen was confirmed. After hot forging, tensile strength and elongation were increased. It was considered that casting defect was removed by compressive working.

Applications of Semi-Solid Forming and its Problems (반용융 성형공정의 응용 및 문제점)

  • 강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.135-147
    • /
    • 1997
  • The production of light metal parts using aluminum is mainly performed by die casting and squeeze casting, which directly fabricate the required shape from the liquid state. However, die casting is subject to defects such as shrinkage porosity and air trapped when molten metal enters the cavity, whilst squeeze casting also has defects due to turbulent flow in the die cavity. Both diecasting and sqeeze casting have inhomogeneous mechanical property in terms of dendritic structure during solidification. Active research has been carried out on semi-solid processing, rather than on conventional process methods such as die casting, which involve various problems. Therefore in this paper, to introduce the fundamental technology for d e design, in die casting and forging process with semi-solid materials, relationship between stress and strain of semi-solid materials, and for producing parts die design has been proposed as parameters of globulization of the microstructure and gate shape. The prevention of various defects to produce sound parts are also introduced.

  • PDF

A Study on the Hot Forging Process Development for an Automotive Aluminum Lower Arm by Computer Aided Engineering (CAE를 활용한 자동차 알루미늄 로어암의 열간단조 공정개발에 관한 연구)

  • Lee K. O.;Park I. W.;Je J. S.;Kim Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.188-191
    • /
    • 2005
  • Lower arm for automobile has been made in steel traditionally. Nowadays steel is being substituted fur aluminum to reduce weight of automobile. Widely applied production method of aluminum component has been casting processes or cast/forging processes. But casting or cast/forging processes have limits of application to parts which is required high strength durability like automotive component. In this research, hot forging process has been adopted to produce aluminum lower arm to ensure required mechanical properties. To reduce production cost, 2 pieces with 1 blow process was developed. Optimization and verification of hot forging process for aluminum lower arm was performed by computer aided engineering using finite volume methods.

  • PDF

A study of the Forging Process Using (알루미늄 주물을 이용한 단조 공정 연구)

  • 김대용;윤성만;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.138-141
    • /
    • 1997
  • CFM(Cast Forge Method) is widely used in manufacturing industry to produce aluminium parts with good mechanical properties and low production cost. CFM is the process which produces a final products by forging from the initial billet by casting. The study on this paper covers the automatic design method which finds a pertinent shape for initial billet using Fast Fourier Transform, low-pass frequency filtering and FEM simulation of the nonisothermal forging process by DEFORM. These works will give us an information to enhance the low strength of a aluminium casting.

  • PDF