• Title/Summary/Keyword: Cast-in Place Pile method

Search Result 21, Processing Time 0.031 seconds

The Study on The Evaluation of The Ground Vibration of Cast in Place Concrete Pile Method Effect to Precision Equipment (현장타설 말뚝 공법의 지반진동이 정밀장비에 미치는 영향성 평가)

  • Hong, Byung-Kuk;Kim, Young-Chan;Jang, Kang-Seok;Yoon, Je-Won;Sim, Sang-Deok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.97-102
    • /
    • 2011
  • The size of TV and TFT-LCD are bigger and bigger for the next generation exposure equipment install that existing fab are getting a lot of additions. When the new fab build an extension that the shortening of the construction and non-vibration are use cast in place concrete pile method. In this study when lay the foundation of existing fab adjoin use vibration monitoring system are rotator type all casing method among cast in place concrete pile method. The evaluation of ground vibration of rotator type all casing method effect to precision equipment and vibration area of influence.

  • PDF

Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil

  • Zou, Jin-Feng;Yang, Tao;Deng, Dong-ping
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • The long-term settlement characteristics for the cast-in-place bored pile in the deep-thick soft soil are investigated by post-grouting field tests. Six cast-in-place bored engineering piles and three cast-in-place bored test piles are installed to study the long-term settlement characteristics. Three post-grouting methods (i.e., post-tip-grouting, post-side-grouting, and tip and side post-grouting) are designed and carried out by field tests. Results of the local test show that decreased settlements for the post-side-grouted pile, the post-tip-grouted pile and the tip and side post-grouted pile are 22.2%~25.8%, 30.10%~35.98% and 32.40%~35.50%, respectively, compared with non-grouted piles. The side friction resistance for non-grouted piles, post-side-grouted pile, post-tip-grouted pile and the tip and side post-grouted pile undertakes 89.6~91.3%, 94.6%, 92.4%~93.0%, 95.7% of the total loading, respectively. At last, the parameters back analysis method and numerical calculation are adopted to predict the long-term settlement characteristics of the cast-in-place bored pile in the deep-thick soft soil. Determined Bulk modulus (K) and a creep parameter (Ks) are used for the back analysis of the long-term settlement of the post-grouted pile. The settlement difference between the back analysis and the measurement data is about 1.11%-7.41%. Long-term settlement of the post-grouted piles are predicted by the back analysis method, and the predicted results show that the settlement of the post-grouted pile are less than 6 mm and will be stable in 30 days.

On the Counter Plan of Foundation Method being based on N-Value in the Soft-Ground (연약지반에 있어 N치에 의한 기초공법 대책연구)

  • Lee, Y.H.;Lee, D.M.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.69-90
    • /
    • 1996
  • This study is related to save the bearing capacity from using Meyerhof formula namely, static mechanics formula with the S.P.T(N value) of the soft ground and is to choose the soft ground improvement method by the using of total load for the proper method of the pile foundation and then to design the most suitable pile foundation to fit the actual circumstance. The purpose of this study is calculating the diameter of the pile foundation by static mechanics formula and introducing the optimum design condition from the result of the bearing capacity for using N value of the S.P.T obtained from the deep soft ground about the piles such as P.H.C pile, pipe and cast-in-place pile of big diameter, etc. As above-mentioned, it is considered that the use of P.H.C pile or pipe pile is advisable on the synthetical investigation and that the selection of cast-in-place pile method is desirable in terms of the constructive safety and durability.

  • PDF

Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method (주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가)

  • Lee, Kyung-koo;Kim, Dae-Hee;Joo, Eun-Hee;Kim, Young-Gi;Kim, Bong-Chan;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

BIM Based Virtual Simulations in CIP(Case in Place Pile) Method for Underground Space Excavation (3차원 정보모델을 활용한 지하공간 굴착 CIP 공법의 가상검토 -서울대학병원 지하 복합진료공간 임대형 민자사업 BIM 설계를 중심으로-)

  • Lee, Hyuk-Jin;Park, Kun-Young;Kim, Hyo-Jin;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.517-520
    • /
    • 2010
  • BIM 설계시 의무사항으로 포함되어 있는 원지형과 암층별 지층, 흙막이 공법 중 CIP(Cast in Place Pile)공법, 구조물 형상을 3차원 정보 모델로 생성하고, 모델을 통해 정확한 2D 도면의 생성, 각 공정간의 간섭검토, 암층별 토공량 및 흙막이의 수량을 산출하였다. 최종 설계안을 도출하기 위해 3차원 기법이 설계 초기에 도입되어 반복적인 노력과 시간을 최소화하여 많은 설계대안을 제시하도록 하였으며, 정확한 설계결과를 얻기 위해, 2D 설계와 3D 설계를 병행 수행함과 동시에 이 과정과 결과를 비교하여 3차원 모델의 효과를 검증하였다.

  • PDF

Geotomography Applied for the Integrity Test of Cast-in-place Piles (현장타설콘크리트말뚝의 건전도 평가를 위한 geotomography의 적용 연구)

  • Lee Jae-Kyung;Park Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.5-12
    • /
    • 2005
  • Recently, geophysical prospecting methods have played very important roles in civil and environmental engineering problems. Technical advances in geophysical instruments and computer system made it possible to get underground images with very high resolution far purposes to resolve those problems. It was possible partly due to ever increasing demand for development of technologies needed to precisely detect polluted areas and prevent ground-related accidents. Based on the same demand, integrity tests of cast-in place piles draw more attention and development of accurate test procedures is required. Ultrasonic methods is one of most advanced non-destructive procedures. In the paper, a geotomography method is employed for the cast-in place pile integrity test using ultrasonic waves. The image of pile interior is scanned and scrutinized far better and more accurate decision in the cast-in place pile integrity. In this study, we firstly examined the accuracy fur tomography program with idealized synthetic models built in water tank: their position and size were changed in the tank and each case was studied. In the next stage, real concrete pile models were fabricated and images of anomaly areas inside the pile were scanned to successfully locate those areas.

Evaluation on Field Applicability of Cast-In-Place Pile using Surfactant Grout (계면활성제계 그라우트를 활용한 흙막이 벽체공법(CIP)의 현장 적용성 평가)

  • Do, Jinung;Kim, Hakseung;Park, Bonggeun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In case of underground construction affected by groundwater, CIP (Cast-In-Place Pile) method is generally used to resolve the geo-hydraulic problem. However, as this method has poor connectivity between piles, an auxiliary method for cut-off is needed in many cases. In this study, a new concept earth retaining wall method (H-CIP) with no auxiliary method, by using surfactant grout (Hi-FA) which improves antiwashout and infiltration ability, is introduced, and its field applicability is evaluated. CIP and H-CIP piles were installed with same ground conditions, and field and laboratory tests were conducted to verify the performance. As results, newly contrived H-CIP method shows higher field performance for cut-off and strength than conventional CIP method.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

A Numerical Study on the Estimation Method of the Results of Static Pile Load Test Using the Results of Bi-directional Pile Load Test of Barrette Piles (바렛말뚝의 양방향재하시험을 이용한 정적압축재하시험 결과 추정방법에 관한 수치해석적 연구)

  • Hong, Young-Suk;Yoo, Jae-Won;Kang, Sang-Kyun;Choi, Moon-Bong;Lee, Kyung-Im
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2019
  • Bi-directional pile load test (briefly called 'BDH PLT') cannot be performed at loading levels where ultimate bearing capacity could be assessed in field, it is not possible to precisely determine both ultimate load and yield load and under loading. Since the load is transmitted separately to the skin and the end unlike the static pile load test (briefly called 'SPLT') and the direction of loading on the skin is opposite, such methods could have a result different from actual movements of shafts. In this study, three-dimensional finite element method (briefly called '3D FEM') analysis was conducted from results of the BDH PLT, made with barret piles, which were large-diameter cast-in-place concrete piles, and the calculated design constants were applied to the 3D FEM analysis of the SPLT to interpret them numerically and then, actual behaviors of cast-in-place concrete piles were estimated. First, using the results of the BDH PLT with cast-in-place concrete piles, behaviors of the piles made by loading upwards and downwards were analyzed to calculate load-displacement. Second, the design constants, calculated by the 3D FEM analysis and the back analysis, were applied on the 3D FEM analysis for the SPLT, and from these results, behaviors of the SPLT through the BDH PLT was analyzed. Last, the results of the 3D FEM analysis of the SPLT through the BDH PLT was expressed in relationships as {A ratio of bearing capacity of the SPLT and of the BDH PLT (y)} ~ {A ratio of reference displacement and pile circumference (x)}, and they were all classified by reference displacement at 10.0 mm, 15.0 mm, and 25.4 mm.