• Title/Summary/Keyword: Cast Iron

Search Result 691, Processing Time 0.03 seconds

Influence of Heat Treatment on the Structures and Mechanical Properties of Cast Irons. (주철(鑄鐵)의 열처리조건(熱處理條件)에 의한 조직(組織) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究)(1))

  • Kim, Hong-Beom;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.2 no.2
    • /
    • pp.10-17
    • /
    • 1982
  • This study has been carried out to determine the change of mechanical properties and microstructures by the heattreatment to relieve the residual stresses for gray cast irons. The results have been obtained from the experiment as follows; 1) The annealing above $600^{\circ}C$ for the stress relieving of gray cast iron decrease the tensile strength and hardness 2) The decrease reates of tensile strength and hardness of gray cast iron after annealing above $600^{\circ}C$ are increased with increasing the holding time. 3) The gray cast iron containing the elements of Mn, Cr has increased the heating temperature for the decrease of tensile strength and hardness. 4) The decrease of mechanical properties by annealing are assumed that the formation of ferrite takes placed from the decomposition of eutectoid cementite in the matrix.

  • PDF

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

A study for the Effects of Sb Addition on the properties of Cast Iron (I) (주철(鑄鐵)의 성질(性質)에 미치는 Sb 첨가(添加)의 효과(效果)에 관(關)한 연구(硏究)(I);기계적(機械的) 성질(性質)과 Pearlite의 안정화효과(安定化效果)를 중심(中心)으로)

  • Lee, Byeong-Yehp;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.20-29
    • /
    • 1984
  • It is very important to obtain gray and ductile cast irons with completely pearlitic structure by addition more economical alloying elements. In this study, 9 melts of gray iron and 5 melts of Mg-treated ductile cast iron were made according to Sb content (0-0.08% Sb). Each melt were casted to ${\phi}20mm$ test bars in sand mold under the same condition and inspected microstructure, mechanical and thermal properties. The results obtained from this study are as follows: 1. It is confirmed that Sb should be an economical, simple and useful additive for avoiding ferrite in gray and even in ductile cast irons. 2. For gray cast iron, the recommended ladle addition of metallic Sb amounts to 0.05%. At these levels, Sb has no detrimental influence on the mechanical properties of gray cast irons, which are normally modified according to their pearlite content without increasing the chilling tendency. 3. Despite its adverse influence on graphite shape in ductile iron, Sb can be used as a pearlite stabilizing alloying element even in the case of Mg - treated iron. The quantity to be added does not exceed 0.04% in the case of thinwalled castings. 4. The nodule count is increased very much and the shape of graphite particles become remarkably spheroidal. The matrix may be fully pearlitized, except for thin - walled castings, because the high nodule count results inevitably in some ferrite. 5. The $Ac_1$ and pearlite decomposition temperature are rised in accordance with increasing of additive Sb amount.

  • PDF

Growth Mechanisms of Graphite Spherulites in the Nodular Cast Iron and the High-pressure-treated Ni-C alloy (구상흑연 주철과 고압처리된 Ni-C 합금에서 구상화 흑연의 성장 기구)

  • Park, Jong-Ku;Ahn, Jae-Pyoung;Kim, Gyeungho;Kim, Soo-Chul
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.200-207
    • /
    • 2000
  • The growth mechanisms of graphite spherulite both in the nodular cast iron and the high pressuretreated Ni-C alloy were investigated by SEM, HRTEM and EELS. The internal microstructure and lattice image of graphite spherulite extracted from Ni-C alloy were compared with those of graphite spherulite extracted from the nodular cast iron. The ratios of $sp^2$ and $sp^3$ bonding in the respective graphite spherulite measured by EELS, are compared each other. The graphite spherulite of Ni-C alloy had little internal defects and much $sp^3$ carbon species compared to that of the nodular cast iron. Present difference in microstructural features and bonding characters indicated that the graphite spheruites in the high pressuretreated Ni-C alloy grew by different mechanism compared with those in the nodular cast iron.

  • PDF

Microstructure and Wear Properties in an Engine Oil Environment of Extruded Hyper-eutectic Al-15wt.%Si Alloy and Gray Cast Iron (과공정 Al-15wt.%Si 압출재와 회주철의 미세조직 및 엔진 오일 환경에서의 마모 특성)

  • Kang, Y.J.;Kim, J.H.;Hwang, J.I.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.339-346
    • /
    • 2018
  • This study investigated the microstructure and wear properties of extruded hyper-eutectic Al-Si (15wt.%) alloy in an engine oil environment. The wear mechanism of the material was also analyzed and compared to conventional gray cast iron. In microstructural observation results of Al-15wt.%Si alloy, primary Si phase ($45.3{\mu}m$) and eutectic Si phase ($3.1{\mu}m$) were found in the matrix, and the precipitations of $Mg_2Si({\beta}^{\prime})$, $Al_2Cu({\theta}^{\prime})$ and $Al_6(Mn,Fe)$ were also detected. In the case of gray cast iron, ferrite and pearlite were observed. It was also observed that flake graphite ($20-130{\mu}m$) were randomly distributed. Wear rates were lower in the Al-Si alloy as compared to those of gray cast iron in all load conditions, confirming the outstanding wear resistance of Al-15wt.%Si alloy in engine oil environment. In the $4kg_f$ condition, the wear rate of gray cast iron was $6.0{\times}10^{-5}$ and that of Al-Si measured $0.8{\times}10^{-5}$. The microstructures after wear of the two materials were analyzed using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The primary Si and eutectic Si of Al-Si alloy effectively mitigated the abrasive wear, and the Al matrix effectively endured to accept a significant amount of plastic deformation caused by wear.

Effects of Pouring Temperature and Alloying Elements on Damping Capacity and Mechanical Properties in 3.6%C Grey Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 주입온도 및 합금원소 첨가의 영향)

  • Kim, J.C.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.231-238
    • /
    • 2000
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of pouring temperature on the damping capacities and mechanical properties were investigated in 3.6%C cast iron. At $1400^{\circ}C$, specific damping capacity showed the maximum value, and decreased with increase pouring temperature. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ni on the damping capacities and mechanical properties have been investigated in 3.6%C gray cast iron. At 0.2%Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content. Graphite length also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite length. In case of Mo addition in 3.6%C-0.2%Ni cast iron, specific damping capacity and tensile strength was 27% and $20kgf/mm^2$ at 3.6%C-0.2%Ni-0.3%Mo cast iron respectively.

  • PDF

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions (다양한 조건에 따른 주철 소재의 마찰/마모 특성에 관한 연구)

  • Joo, Ji-Hoon;Kim, Chang-Lae;Nemati, Narguess;Oh, Jeong-Taek;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.765-772
    • /
    • 2015
  • Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

A Study on Solid Particle Erosion Wear Characteristics of High Cr White Iron Hardfacing by Response Surface Method (반응표면분석에 의한 고 Cr 철계 오버레이 용접부의 분체침식마모 특성의 연구)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.551-556
    • /
    • 2002
  • Solid particle erosion wear characteristics of high Cr white iron hardfacing were investigated using the erosion wear test method according with the ASTM G76-95. Wear experiments, where the blast angle, blast distance and blast pressure were selected as test variables, were planned and analyzed by response surface method (RSM to evaluate the wear loss statistically and quantitatively. The measured wear losses well coincided with the calculated ones by the experimental equation. The wear loss of high Cr cast iron hardfacing was increased with blasting pressure, but affected in a complicated way by the blasting angle and distance. Erosion wear of high Cr cast iron hardfacing could be well predicted by RSM analysis of wear variables.

A Study on the Mechanical Properties of High-P, High-Si Ductile Cast Iron (고인(高燐), 고규소(高硅素) 구상흑연주철(球狀黑鉛鑄鐵)의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Ha-Young
    • Journal of Korea Foundry Society
    • /
    • v.8 no.3
    • /
    • pp.296-309
    • /
    • 1988
  • In this study the mechanical properties of ferritic ductile cast iron in as-cast are discussed by metallographic considering the effect of phosphorus content(about 0 - 0.8wt.%). In ferritic S.G. cast iron containing about 4.2wt.% Si, 0.5wt.% Ni, 0.02wt.%B, these samples are investigated for castability, microstructure, machinability, wear resistance, mechanical and thermal properties. The main results are summarized as follows. 1) The chill depth increased greatly with P addition up to about 0.6wt.% but the tensile strength and the elongation are decreased smoothly. 2) The size of S.G. and the amount of steadite increase with increasing P content. This means the tendency of increasing the number of S.G. 3) The maximum value of wear by mechanical fracture was appeared at the abrasion speed of 1.14m/sec and the plastic Flow layers are stretched longly on the wear surface with decreasing P content. 4) Although the coefficient of thermal expansion increased with P addition, the cast iron growth was slowing down extremely at 0.6w.% P or more.

  • PDF