Browse > Article
http://dx.doi.org/10.3795/KSME-A.2015.39.8.765

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions  

Joo, Ji-Hoon (School of Mechanical Engineering, Yonsei Univ.)
Kim, Chang-Lae (School of Mechanical Engineering, Yonsei Univ.)
Nemati, Narguess (Center for Nano-Wear, Yonsei Univ.)
Oh, Jeong-Taek (School of Mechanical Engineering, Yonsei Univ.)
Kim, Dae-Eun (School of Mechanical Engineering, Yonsei Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.39, no.8, 2015 , pp. 765-772 More about this Journal
Abstract
Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.
Keywords
Alumina Particle; Cast Iron; Friction; High Temperature Tribotester; Wear; Wheel/Rail;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bathe, R., Krishna, V. S., Nikumb, S. K. and Padmanabham, G., 2014, "Laser Surface Texturing of Gray Cast Iron for Improving Tribological Behavior," Applied Physics A: Materials Science & Processing, Vol. 117, No. 1, pp. 117-123.   DOI
2 Arias-Cuevasa, O., Li, Z. and Lewis, R., 2011, "A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel-Rail Contact," Wear, Vol. 271, No. 5, pp. 14-24.   DOI   ScienceOn
3 Wang, W. J., Zhang, H. Y., Wang, H. Y., Liu, Q. Y. and Zhu, M. H., 2011, "Study on the Adhesion Behavior of Wheel/Rail Under Oil, Water and Sanding Conditions," Wear, Vol. 271, No. 9-10, pp. 2693-2698.   DOI   ScienceOn
4 Kaur, K. and Pandey, O. P., 2010, "Dry Sliding Wear Behavior of Zircon Sand Reinforced Al-Si Alloy," Tribology Letters, Vol. 53, No. 3, pp. 377-387.
5 Matsumoto, K., Suda, Y., Komine, H., Nakai, T., Tomeoka, M., Shimizu, K., Tanimoto, M., Kishimoto, Y. and Fujii, T., 2005, "A Proposal of Wheel/Rail Contact Model for Friction Control," Journal of Mechanical Science and Technology, Vol. 19, No. 1, pp. 437-443.   DOI
6 Chen, H., Ishida, M., Namuraa, A., Baek, K. S., Nakahara, T., Leban, B. and Pau, M., 2011, "Estimation of Wheel/Rail Adhesion Coefficient under Wet Condition with Measured Boundary Friction Coefficient and Real Contact Area," Wear, Vol. 271, No. 1-2, pp. 32-39.   DOI   ScienceOn
7 Chen, H., Ishida, M. and Nakahara, T., 2005, "Analysis of Adhesion Under Wet Conditions for Three-Dimensional Contact Considering Surface Roughness," Wear, Vol. 258, No. 7-8, pp. 1209-1216.   DOI   ScienceOn
8 Berthier, Y., Descartes, S., Busquet, M., Niccolini, E., Desrayaud, C., Baillet, L. and Baietto-Dubourg, M. C., 2004, "The Role and Effects of the Third Body in the Wheel-Rail Interaction," Fatigue & Fracture of Engineering Materials & Structures, Vol. 27, No. 5, pp. 423-436.   DOI   ScienceOn
9 Ohno, K., Ban, T., Obara, T. and Kawaguchi, K., 1994, "Adhesion Improvement with Jetting Ceramic Particles in High Speed Running," Railway Technical Research Institute, Quarterly Report, Vol. 35, No. 4, pp. 218-220.
10 Wang, W. J., Liu, T. F., Wang, H. Y., Liu, Q. Y., Zhu, M. H. and Jin, W. S., 2014, "Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail Under Low Adhesion Condition," Tribology International, Vol. 75, pp. 16-23.   DOI   ScienceOn
11 Kim, K. I., Kim, C. L. and Kim, D. E., 2012, "Characterization of Durability of Coatings for Cell Phone Cover by Wear, Erosion, and Pull-off Tests," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 9, pp. 1633-1639.   DOI   ScienceOn
12 Bhandari, V. B., 2014, MACHINE DESIGN Data Book, McGraw Hill Education, India, pp. 22-24.
13 Lee, H. N., Nakamura, H. and Kobayashi, H., 2004, "Utilization of Thermo-elasto-plastic Analysis of Welding Eigen strain for Improvement of the Bead Flush Method," Engineering Fracture Mechanics, Vol. 71, No. 15, pp. 2245-2255.   DOI   ScienceOn
14 Yan, W. and Fisher, D., 2000, "Applicability of the Hertz Contact Theory to Rail-Wheel Contact Problems," Archive of Applied Mechanics, Vol. 70, No. 4, pp. 255-268.   DOI
15 Grieve, D. G., Dwyer-Joyce, R. S. and Beynon, J. H., 2001, "Abrasive Wear of Railway Track by Solid Contaminants," Journal of Rail and Rapid Transit, Vol. 215, No. 3, pp. 193-205.   DOI   ScienceOn
16 Fischer, F. D., Daves, W. and Werner, E. A., 2003, "On the Temperature in the Wheel-Rail Rolling Contact," Fatigue & Fracture of Engineering Materials & Structures, Vol. 26, No. 10, pp. 999-1006.   DOI   ScienceOn
17 Wong, K. C., Lu, X., Cotter, J., Eadie, D. T., Wong, P. C. and Mitchell, K. A. R., 2007, "Surface and Friction Characterization of MoS2 and WS2 Third Body Thine Films Under Simulated Wheel/Rail Rolling-Sliding Contact," Wear, Vol. 264, No. 7, pp. 526-534.   DOI
18 Descartes, S., Desrayaud, C., Niccolini, E. and Berthier, Y., 2005, "Presence and Role of the Third Body in a Wheel-Rail Contact," Wear, Vol. 258, No. 7, pp. 1081-1090.   DOI   ScienceOn
19 Misra, A. and Finnie, I., 1983, "An Experimental Study of Three-body Abrasive Wear," Wear, Vol. 85, No. 1, pp. 57-68.   DOI   ScienceOn
20 Venkatesan, K., Subramanian, C. and Summerville, E., 1997, "Three-body Abrasion of Surface Engineered Die Steel at Elevated Temperature," Wear, Vol. 203, pp. 129-138.