• 제목/요약/키워드: Caspase-dependent/independent apoptosis

검색결과 40건 처리시간 0.026초

Dihydroartemisinine Enhances Dictamnine-induced Apoptosis via a Caspase Dependent Pathway in Human Lung Adenocarcinoma A549 Cells

  • An, Fu-Fei;Liu, Yuan-Chong;Zhang, Wei-Wei;Liang, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5895-5900
    • /
    • 2013
  • Dictamnine (Dic) has the ability to exert cytotoxicity in human cervix, colon, and oral carcinoma cells and dihydroartemisinin (DHA) also has potent anticancer activity on various tumour cell lines. This report explores the molecular mechanisms by which Dic treatment and combination treatment with DHA and Dic cause apoptosis in human lung adenocarcinoma A549 cells. Dic treatment induced concentration- and time-dependent cell death. FCM analysis showed that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which loss of mitochondrial membrane potential (${\Delta}{\Psi}m$) was not involved. In addition, inhibition of caspase-3 using the specific inhibitor, z-DQMD-fmk, did not attenuate Dic-induced apoptosis, implying that Dic-induced caspase-3-independent apoptosis. Combination treatment with DHA and Dic dramatically increased the apoptotic cell death compared to Dic alone. Interestingly, pretreatment with z-DQMD-fmk significantly attenuated DHA and Dic co-induced apoptosis, implying that caspase-3 plays an important role in Dic and DHA co-induced cell apoptosis. Collectively, we found that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which mitochondria and caspase were not involved and DHA enhanced Dic induced A549 cell apoptosis via a caspase-dependent pathway.

Extract of Saccharina japonica Induces Apoptosis companied by Cell Cycle Arrest and Endoplasmic Reticulum Stress in SK-Hep1 Human Hepatocellular Carcinoma Cells

  • Jung, Hyun Il;Jo, Mi Jeong;Kim, Hyung-Rak;Choi, Yung Hyun;Kim, Gun-Do
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.2993-2999
    • /
    • 2014
  • Saccharina japonica is a family member of Phaeophyceae (brown macro-alga) and extensively cultivated in China, Japan and Korea. Here, the potential anti-cancer effect of n-hexane fraction of S. japonica was evaluated in SK-Hep1 human hepatocellular carcinoma cells. The N-hexane fraction reduced cell viability and increased the numbers of apoptotic cells in a both dose- and time-dependent manner. Apoptosis was activated by both caspase-dependent and independent pathways. The caspase-dependent cell death pathway is mediated by cell surface death receptors and activated caspase-8 amplified the apoptotic signal either through direct activation of downstream caspase-3 or pro-apoptotic proteins (Bad, Bax and Bak) subsequently leading to the release of cytochrome c. On the other hand, caspase-independent apoptosis appeared mediated by disruption of mitochondrial membrane potential and translocation of AIF to the nucleus where they induced chromatin condensation and/or large-scale DNA fragmentation. In addition, the n-hexane fraction induced endoplasmic reticulum (ER)-stress and cell cycle arrest. The results suggested that potential anti-cancer effects of n-hexane extract from S. japonica on SK-Hep1 cells.

도핵승기탕(桃核承氣湯) 자궁경부암세포(子宮經部癌細胞)(HeLa cell)의 apoptosis에 미치는 영향(影響) (Dohaekseungkitang extract induced apoptosis in Human Cervical carcinoma HeLa cells)

  • 강용구;안규환;공복철;김송백;조한백
    • 대한한방부인과학회지
    • /
    • 제19권2호
    • /
    • pp.77-91
    • /
    • 2006
  • Purpose : To address the ability of Dohaekseungkitang (DST: a commonly used herb formulation in Korea, Japan and China to have anti-cancer effect on cervical carcinoma), we investigated the effects of DST on programmed cell death (apoptosis) in HeLa human cervical carcinoma cells. Methods : We cultured HeLa cell which is human metrocarcinoma cell in D-MEM included 10% fetal bovine serum(Hyclone Laboratories) below $37^{\circ}C$, 5% CO2. Then we observed apoptosis of log phage cell which is changed cultivation liquid 24 Hours periodically. Results : After the treatment of DST for 48 hours, apoptosis occurred in a dose-dependent manner. In this study, we have shown that DST induces calpain and the associated caspase-8 and -9 activations. Apoptosis was prevented by pre-incubation of the cells with the calcium cHeLator-BAPTA-AM, calcium channel blocker-Nif edipine or Ryonidine agonist-Ryonidine peptide, implicating calcium in the apoptotic process. Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, especially in calcium-related apoptosis. However this study showed 1hat either calpain inhibitor-calpastin or caspase-3 inhibitor-DEVD- did not blocked the herb formulation-induced apoptosis in HeLa human cervical carcinoma cells. D ST initiates a cell death pathway that is partially dependent of caspases. DST-induced apoptosis requires caspase-independent mechanism. Conclusion : We conclude that DST-induced calpain activation triggers the intrinsic apoptotic pathway in which caspase-independent mechanism is also involved.

  • PDF

Gemcitabine의 세포사멸 기전 연구 (Mechanism of gemcitabine-induced apoptosis)

  • 설재원;이유진;강동원;강형섭;김남수;김인식;박상열
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.495-500
    • /
    • 2005
  • The nucleoside analogue gemcitabine (2', 2-difluorideoxycytide) is potential against a wide variety of solid tumors and considered to be one of the most active drugs in the treatment of non-small cell lung cancer (NSCLC). In this study, we investigated the signals of gemcitabine-induced apoptosis, especially in point of caspase pathway in A549. We exposed A549 cells to gemcitabine for dose/time dependent manner and the results showed that gemcitabine induced apoptotic cell death in a time/dose-dependent manner. We also treated to gemcitabine and Z-VAD-fmk as a pan-caspase inhibitor for 24 hours. Gemcitabine alone induced 35.3% cell death, and co-treatment with gemcitabine and Z-VAD-fmk induced 15.1% apoptotic cell death. Our results demonstrated that Z-VAD-fmk as a pan-caspase did not completely block the gemcitabine-induced apoptosis. Western blotting analysis showed that gemcitabine increased caspase-3, active caspase-8, p21 and p53 protein expressions in A549. Co-treatment with Z-VAD-fmk completely blocked caspase-3 and active caspase-8 protein expressions, but did not change the level of p21 and p53 protein expressions. Our data indicate that gemcitabine induced apoptosis through caspase-dependent and -independent pathways in A549.

Cytosine Arabinoside 유도된 PC12 세포의 사망 경로 (Cytosine Arabinoside-Induced PC12 Cell Death Pathway)

  • 양보기;양병환;채영규
    • 생물정신의학
    • /
    • 제5권2호
    • /
    • pp.219-226
    • /
    • 1998
  • Cytosine arabinoside(AraC) inhibits DNA synthesis and ${\beta}$-DNA polymerase, an enzyme involved in DNA repair. This, a potent antimitotic agent, is clinically used as an anticancer drug with side effect of severe neurotoxicity. Earlier reports suggested that inhibition of neuronal survival by AraC in sympathetic neuron may be due to the inhibition of a 2'-deoxycytidine-dependent process that is independent of DNA synthesis or repair and AraC induced a signal that is triggers a cascade of new mRNA and protein synthesis, leading to apoptotic cell death in cultured cerebellar granule cells. The present study would suggest whether caspase family(ICE/CED-3-like protease) involved in AraC-induced apoptosis pathway of PC12 cells. It was observed that treatment of PC12 cells with AraC led to decrease of viability by MTT assay and morphology changes, which did not suggest that AraC induced apoptosis in PC12 cells. The mRNA of caspase-1/caspase-3 were expressed in PC12 cells constitutively, and AraC did not activate caspase family. These results suggest that caspase-1/caspase-3 may not be required for AraC-induced cell death pathway in PC12 cells.

  • PDF

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih;Ban, Hongseok;Kim, Young-Hee;Lee, Sang-Kyung
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.533-538
    • /
    • 2009
  • Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

5-aminoimidazole-4-carboxamide Riboside Induces Apoptosis Through AMP-activated Protein Kinase-independent and NADPH Oxidase-dependent Pathways

  • Wi, Sae Mi;Lee, Ki-Young
    • IMMUNE NETWORK
    • /
    • 제14권5호
    • /
    • pp.241-248
    • /
    • 2014
  • It is debatable whether AMP-activated protein kinase (AMPK) activation is involved in anti-apoptotic or pro-apoptotic signaling. AICAR treatment increases AMPK-${\alpha}1$ phosphorylation, decreases intracellular reactive oxygen species (ROS) levels, and significantly increases Annexin V-positive cells, DNA laddering, and caspase activity in human myeloid cell. AMPK activation is therefore implicated in apoptosis. However, AMPK-${\alpha}1$-knockdown THP-1 cells are more sensitive to apoptosis than control THP-1 cells are, suggesting that the apoptosis is AMPK-independent. Low doses of AICAR induce cell proliferation, whereas high doses of AICAR suppress cell proliferation. Moreover, these effects are significantly correlated with the downregulation of intracellular ROS, strongly suggesting that AICAR-induced apoptosis is critically associated with the inhibition of NADPH oxidase by AICAR. Collectively, our results demonstrate that in AICAR-induced apoptosis, intracellular ROS levels are far more relevant than AMPK activation.

Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells

  • Kim, Chi-Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.365-369
    • /
    • 2010
  • In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.

Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

  • Shin, Ju-Hyun;Min, Sang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.573-580
    • /
    • 2016
  • Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery.