• Title/Summary/Keyword: Caspase-3 inhibitors

Search Result 91, Processing Time 0.028 seconds

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets

  • Nagashima, Fumiaki;Nishiyama, Ryohta;Iwao, Beniko;Kawai, Yuiko;Ishii, Chikanao;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [$^3H$]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both $Na^+$-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.

Histone Deacetylase Inhibitor Trichostatin A Enhances Antitumor Effects of Docetaxel or Erlotinib in A549 Cell Line

  • Zhang, Qun-Cheng;Jiang, Shu-Juan;Zhang, Song;Ma, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3471-3476
    • /
    • 2012
  • Background and Objective: Histone deacetylase (HDAC) inhibitors represent a promising class of potential anticancer agents for treatment of human malignancies. In this study, we investigated the effect of trichostatin A (TSA), one such HDAC inhibitor, in combination with docetaxel (TXT), a cytotoxic chemotherapy agent or erlotinib, a novel molecular target therapy drug, on lung cancer A549 cells. Methods: A549 cells were treated with TXT, erlotinib alone or in combination with TSA, respectively. Cell viability, apoptosis, and cell cycle distribution were evaluated using MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide) assay, Hochst33258 staining and flow cytometry. Moreover, immunofluorescent staining and Western blot analysis were employed to examine alterations of ${\alpha}$-tubulin, heat shock protein 90 (hsp90), epidermal growth factor receptor (EGFR), and caspase-3 in response to the different exogenous stimuli. Results: Compared with single-agent treatment, co-treatment of A549 cells with TSA/TXT or TSA/erlotinib synergistically inhibited cell proliferation, induced apoptosis, and caused cell cycle delay at the $G_2/M$ transition. Treatment with TSA/TXT or TSA/erlotinib led to a significant increase of cleaved caspase-3 expression, also resulting in elevated acetylation of ${\alpha}$-tubulin or hsp90 and decreased expression of EGFR, which was negatively associated with the level of acetylated hsp90. Conclusions: Synergistic anti-tumor effects are observed between TXT or erlotinib and TSA on lung cancer cells. Such combinations may provide a more effective strategy for treating human lung cancer.

Enhanced Sensitivity to Gefitinib after Radiation in Non-Small Cell Lung Cancer Cells

  • Choi, Yun-Jung;Rho, Jin-Kyung;Back, Dae-Hyun;Kim, Hye-Ryoun;Lee, Jae-Cheol;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.4
    • /
    • pp.259-265
    • /
    • 2011
  • Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor somatic mutations in EGFR. The mutations are, however, only found in about 30% of Asian NSCLC patients and all patients ultimately develop resistance to these agents. Ionizing radiation has been shown to induce autophosphorylation of EGFR and activate its downstream signaling pathways. In the present study, we have tested whether the effect of gefitinib treatment can be enhanced after ionizing radiation. Methods: We compared the PC-9 and A549 cell line with its radiation-resistant derivatives after gefitinib treatment with cell proliferation and apoptosis assay. We also analyzed the effect of gefitinib after ionizing radiation in PC-9, A549, and NCI-H460 cells. Cell proliferation was determined by MTT assay and induction of apoptosis was evaluated by flow cytometry. Caspase 3 activation and PARP cleavage were evaluated by western blot analysis. Results: PC-9 cells having mutated EGFR and their radiation-resistant cells showed no significant difference in cell viability. However, radiation-resistant A549 cells were more sensitive to gefitinib than were their parental cells. This was attributable to an increased induction of apoptosis. Gefitinib-induced apoptosis increased significantly after radiation in cells with wild type EGFR including A549 and NCI-H460, but not in PC-9 cells with mutated EGFR. Caspase 3 activation and PARP cleavage accompanied these findings. Conclusion: The data suggest that gefitinib-induced apoptosis could increase after radiation in cells with wild type EGFR, but not in cells with mutated EGFR.

Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

  • Park, Min Young;Jeong, Yeon Jin;Kang, Gi Chang;Kim, Mi-Hwa;Kim, Sun Hun;Chung, Hyun-Ju;Jung, Ji Yeon;Kim, Won Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway.

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes

  • Park, Yeo-Reum;Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on the in vitro development of SCNT embryos. ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; $100{\mu}M$) were added to the micromanipulation medium and holding medium. The expression of X-box binding protein 1 (Xbp1), ER-stress-associated genes, and apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst stages. Levels of Xbp1 splicing and expression of ER-stress-associated genes in SCNT embryos at the one-cell stage decreased significantly with TUDCA treatment (p<0.05). The expression of ER-stress-associated genes also decreased slightly with the addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of caspase-3 and Bcl2-associated X protein (Bax) mRNA were also significantly lower in the TUDCA and Sal+TUD treatments (p<0.05). At the blastocyst stage, there were no differences in levels of Xbp1 splicing, and transcription of ER-stress-associated genes and apoptosis genes between control and treatment groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell number ($63.0{\pm}7.2$) were significantly higher (p<0.05) for embryos in the TUDCA treatment compared with those for control (12.6% and $41.7{\pm}3.1$, respectively). These results indicate that the addition of ER-stress inhibitors, especially TUDCA, during micromanipulation can inhibit cellular damage and enhance in vitro development of SCNT embryos by reducing stress levels in the ER.

The Mechanism of Proteasome Inhibitor-Induced Apoptosis in Lung Cancer Cells (폐암 세포에서 Proteasome Inhibitor에 의한 Apoptosis의 기전)

  • Kim, Cheol Hyeon;Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young Soo;Yoo, Chul Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.4
    • /
    • pp.403-414
    • /
    • 2003
  • Background : Proteasome inhibitors can promote either cell survival or programmed cell death, depending on both the specific type and proliferative status of the cell. However, it is not well known whether inhibition of proteasome activity is related to apoptosis in lung cancer cells. In addition, the exact mechanisms responsible for apoptosis induced by proteasome inhibition are not well understood. In the present study, we have examined the effect of proteasome inhibition on lung cancer cells and tried to test the mechanisms that may be associated with the apoptosis of these cells. Methods : We examined the effect of proteasome inhibition with MG132 or PS-341 on cell survival in A549 and NCI-H157 lung cancer cells using MTT assay, and analyzed the cleavage of PARP by Western blot analysis to find evidence of apoptosis. Next, we evaluated the activation of caspase 3 by Western blot analysis and the activity of JNK by immunocomplex kinase assay. We also examined the changes in anti-apoptotic pathways like ERK and cIAP1 by Western blot analysis after inhibition of proteasome function. Results : We demonstrated that MG132 reduced cell survival by inducing apoptosis in A549 and NCI-H157 cells. Proteasome inhibition with MG132 or PS-341 was associated with activation of caspase 3 and JNK, reduced expression of activated ERK, and downregulation of cIAP1. Conclusion : Apoptosis induced by proteasome inhibition may be associated with the activation of pro-apoptotic pathways like caspase 3 and JNK and the inactivation of anti-apoptotic pathways in lung cancer cells.

Roles of Neutral Sphingomyelinase 1 on CD95-Mediated Apoptosis in Human Jurkat T Lymphocytes

  • Lee, Hyun-Min;Surh, Bo-Young;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.262-270
    • /
    • 2010
  • CD95 receptor is a member of tumor necrosis factor receptor family that mediates apoptosis in many cell types when bound by CD95 ligand or cross-linked by agonistic anti-CD95 antibodies. To determine the role of neutral sphingomyelinase (nSMase) on CD95-mediatd apoptosis, human Jurkat T lymphocytes were exposed to recombinant human CD95 ligand. Treatment with CD95 ligand induced cell death in a concentration and time-dependent manner. CD95-induced cell death was suppressed by inhibitors of SMase such as AY9944 or desipramine. Transfection with human nSMase1 siRNA plasmid into CD95 ligand-treated cells significantly prevented CD95-mediated cell death. CD95-mediated elevation of intracellular ceramide level detected by FACS analysis with anti-ceramide antibody was also decreased by nSMase1 siRNA. Knock-down of nSMase1 expression also blocked cytochrome c release into cytosol and caspase-3 cleavage in CD95-treated cells. Taken together, these results suggest that nSMase1 may play an important role in CD95-mediated apoptotic cell death in Jurkat T cells.

Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner

  • Kim, Da-Hyun;Lee, Hyun-Woo;Park, Hyun-Woo;Lee, Han-Woong;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.419-424
    • /
    • 2020
  • Bee venom (BV), secreted from the venom gland of the honey bee, contains several biological active compounds. BV has been widely used as a traditional medicine for treating human disease, including cancer. In this study, we have shown the molecular mechanism underlying the therapeutic effect of BV on cancer. Treatment with BV reduced the proliferation of cervical-cancer cells in a dose- and time-dependent manner. Interestingly, the killing effect of BV was specific to HPV-positive cervical-cancer cell lines, such as Caski and HeLa cells, and not to HPV-negative cervical-cancer cells (C33A). BV reduced the expression of HPV E6 and E7 at RNA and protein levels, leading to an increase in the expression of p53 and Rb in Caski and HeLa cells. Further, BV decreased the levels of cell-cycle proteins, such as cyclin A and B, and increased the levels of cell-cycle inhibitors, such as p21 and p27. BV significantly induced apoptosis and inhibited wound healing and migration of cervical-cancer cells. It also upregulated the expression of pro-apoptotic BAX and downregulated the expression of anti-apoptotic Bcl-2 and Bcl-XL. Cleavage of caspase-3, caspase-9, and PARP were also induced by BV treatment, whereas the phosphorylation of mitogenic signaling-related proteins, such as AKT, JNK, p38, and ERK, were downregulated. Our results indicate that BV has a therapeutic selectivity for HPV-positive malignant cells, so further clinical studies are needed to assess its clinical application.