• 제목/요약/키워드: Caspase-1

검색결과 1,285건 처리시간 0.035초

The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho;Kim, Su-Jin
    • 대한의생명과학회지
    • /
    • 제18권4호
    • /
    • pp.345-354
    • /
    • 2012
  • Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.

프레닐 페놀계 항생제인 4-O-methyl-ascochlorin에 의한 호중구 세포사멸의 유도 (Induction of Spontaneous Neutrophil Apoptosis by 4-O-Methyl-Ascochlorin, A Prenyl Phenol Compound)

  • 손동훈;이선영;이민정;박주인;홍영습;이용환;장영채;곽종영
    • 생명과학회지
    • /
    • 제16권1호
    • /
    • pp.30-36
    • /
    • 2006
  • 호중구의 세포사멸은 자연적으로 일어나지만 여러 외부자극에 의한 신호의 전달에 의하여 증가하거나 지연된다. 본 연구에서는 항암, 항생제로 개발된 프레닐 페놀계인 ascochlorin의 유도체 중에서 백혈구 암의 세포사멸을 유도하는 4-O-methyl-ascochlorin (MAC)이 호중구의 자연 세포사멸 및 지연되는 세포사멸에 어떠한 영향을 미치는가와 그 작용기작을 연구하였다. 호중구의 세포사멸은 사람 말초 혈액으로부터 분리하여 세포 배양 시간에 따라 형태 변화, annexin-V/propidium iodide의 염색, 및 DNA 전기영동 등으로 조사하였다. MAC는 농도 및 시간 의존 형으로 호중구의 세포사멸을 증가시켰다. 그러나 granulocyte macrophage-colony stimulating factor나 lipopolysaccharide 등에 의한 세포사멸의 지연은 MAC에 의하여 부분적으로 억제되었다. MAC에 의한 세포사멸의 유도는 pancaspase, caspase-8 및 caspase-3 억제제인 zVAD-fmk. zIETD-fmk, 및 zDEVD-fmk에 의하여 억제되었으며 procaspase-8과 procaspase-3의 단백질 양도 MAC로 처리한 호중구에서 현저히 감소하였다. 미토콘드리아 막 투과성은 MAC에 의하여 현저히 감소하였으나 zVAD-fmk에 의하여 완전히 봉쇄되지 못하였다. 이들 결과 들은 MAC에 의한 호중구 세포사멸의 증가는 caspase-8 및 caspase-3의 활성을 통하여 일어나지만 미토콘드리아의 막성분에는 영향이 없다는 것을 제시하고 있다.

Peste des petits ruminants virus infection induces endoplasmic reticulum stress and apoptosis via IRE1-XBP1 and IRE1-JNK signaling pathways

  • Shuyi Yuan;Yanfen Liu;Yun Mu;Yongshen Kuang;Shaohong Chen;Yun-Tao Zhao;You Liu
    • Journal of Veterinary Science
    • /
    • 제25권2호
    • /
    • pp.21.1-21.15
    • /
    • 2024
  • Background: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. Objectives: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. Methods: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. Results: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly downregulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. Conclusions: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.

방사선조사에 의해 발생되는 세포고사에 대한 Cysteamine의 효과 (The Effects of Cysteamine on the Radiation-Induced Apoptosis)

  • 최영민;박창교;조흥래;이형식;허원주
    • Radiation Oncology Journal
    • /
    • 제18권3호
    • /
    • pp.214-219
    • /
    • 2000
  • 목적 : 방사선에 의한 세포고사의 경로와 방사선보호제의 일종인 cysteamine (${\beta}$-mercaptoethylamine)이 방사선에 의한 세포고사에 미치는 영향을 알아보고자 하였다. 대상 및 방법 : HL-60 세포주를 대상으로 대조군, 방사선조사군, cysteamine 전처치군(1 mM, 10 mM) 으로 나누어서 실험을 하였다. 방사선은 6 MV로 10 Gy 일회 조사하였고, cysteamine은 방사선조사 1시간 전에 처치하였다. 세포고사의 경로를 알아보기 위하여 대조군과 방사선조사군에서 Caspase딕의 활성도를 측정하였고, 세포고사에 대한 cysteamine의 영향을 알아보기 위하여 방사선조사 후 1.5, 3, 6, 24시간에서 각 실험군의 생존 세포 수, caspase-3 의 발현과 활성도, poly (ADP-rlbose) polymerase (PAHP)의 발현 등을 측정하여 비교하였다. 결과 : 세포사망수용체에 의한 세포고사의 발생과 관련이 있는 Caspase겨의 귿성도는 방사선조사에 영향을 받지 않았다(p>0.05). 생존 세포 수는 방사선조사 6시간 후부터 감소되었는데(p>0.05), 1 mM cysteamine 전처치군에서는 감소되지 않고 대조군과 비슷하게 유지되었다. 세포고사의 실행 단계라고 알려진 Caspase-3의 발현은 각 실험군들 사이에 차이가 없었으나, 활성도는 방사선조사 후에 증가되었고(P>0.05) 1 mM cysteamlne 전처치에 의해 증가가 감소되는 경향이었다. Caspase-3의 활성에 의해 발생되는 PARP 분해산물(24 kD)의 발현이 방사선조사 후에 관찰 되었는데, 1 mM cysteamine 전처치군에서는 발현의 감소가 관찰되었다. 결론 : 방사선에 의한 세포고사는 세포사망수용체에 의한 세포고사와는 다른 경로를 거치고, 1 mM cysteamine 전 처치는 방사선조사에 의한 세포고사의 발생을 억제하는 경향이 있는 것으로 생각된다.

  • PDF

6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone Induces Caspase-8- and -9-mediated Apoptosis in Human Cancer Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Ristee, Chantrarat;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2637-2641
    • /
    • 2013
  • 6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone (DMMA), a purified compound from Polyalthia cerasoides roots, is cytotoxic to various cancer cell lines. The aims of this study were to demonstrate the type of cancer cell death and the mechanism(s) involved. DMMA inhibited cell growth and induced apoptotic death in human leukemic cells (HL-60, U937, MOLT-4), human breast cancer MDA-MB231 cells and human hepatocellular carcinoma HepG2 cells in a dose dependent manner, with $IC_{50}$ values ranging between 20-55 ${\mu}M$. DMMA also decreased cell viability of human peripheral blood mononuclear cells. The morphology of cancer cells induced by the compound after staining with propidium iodide and examined under a fluorescence microscope was condensed nuclei and apoptotic bodies. Mitochondrial transmembrane potential (MTP) was decreased after 24h exposure in all five types of cancer cells. DMMA-induced caspase-3, -8, and -9 activity was strongly induced in human leukemic HL-60 and MOLT-4 cells, while in U937-, MDA-MB231- and HepG2-treated cells there was partial induction of caspase. In conclusion, DMMA-induced activation of caspase-8 and -9 resulted in execution of apoptotic cell death in human leukemic HL-60 and MOLT-4 cell lines via extrinsic and intrinsic pathways.

천남성(天南星)이 HeLa Cell의 증식억제(增殖抑制)와 apoptosis에 미치는 영향(影響) (Inhibitory effects of Arisaematis rhizoma(天南星) on cell proliferation in HeLa cell)

  • 조정훈;장준복;이경섭;배우진
    • 대한한방부인과학회지
    • /
    • 제19권3호
    • /
    • pp.25-40
    • /
    • 2006
  • Purpose : This study was undertaken to evaluate the inhibitory effects of Arisaematis rhizoma on the cell proliferation in HeLa cells. Methods : The cultured cell after treatment in the different duration in 24, 48, 72 hours with solution of 1%. 5%, 10% Arisaematis rhizoma was quantified by trypan blue exclusin method. The control group was treated with 2% FBS in the different duration in 24, 48, 72 hours. We examined DNA of activated caspase by FACS analysis, caspase-3 activity, DNA fragmentation by DNA laddering, activity of HeLa Cells by the XTT assay, activity of MAP kinase by RT-PCR analysis. Results : After 72 hours culture, the growth activities of 1%, 5%, 10% Arisaematis rhizoma-treated Hela cell were significantly reduced with control group, respectively. After 24 hours culture, the ratio of cells showing caspase activity by FACS analysis were increased in 1%, 5%, 10% Arisaematis rhizoma-treated Hela cell. It were also increased in 48 hours culture of 10% and 72 hours culture of 5%, 10% Arisaematis rhizoma-treated Hela cell. In 24, 48 and 72 hours culture, DNA fragmentations of 5%, 10% Arisaematis rhizoma-treated Hela cell were obviously observed. These results meaned that Arisaematis rhizoma induces apoptosis of HeLa cells. It was supported by increased caspase-3 activity and decreased MAP kinase activity according to time periods and concentrations of Arisaematis rhizoma solution. Conclusion : The study shows that Arisaematis rhizoma has inhibitory effect on cell proliferation and induction capacity of apoptosis of human cevical carcinoma cell line, HeLa cells, in vitro. These results suggest that Arisaematis rhizoma should be useful for treatment of human cevical carcinoma.

  • PDF

Effect of Aralia Cordata Pharmacopuncture on Cartilage Protection and Apoptosis Inhibition In Vitro and in Collagenased-induced Arthritis Rabbit Model

  • Park, Dong-Suk;Baek, Yong-Hyeon
    • 대한한의학회지
    • /
    • 제28권4호
    • /
    • pp.114-123
    • /
    • 2007
  • Osteoarthritis is characterized by cartilage degradation and chondrocytes death. Chondrocyte death is induced by the apotosis through special mechanisms including the activation of caspase-3. On the basis of this background, this study was designed to examine the cartilage protective and anti-apototic effects of Aralia Cordata in in vtro and in collagenase-induced arthritis rabbit model. To conduct in vitro study, chondrocytes culturedfrom rabbit knee joint were treated by 5 ng/ml IL-1a.For in vivo experiment, collagenase-induced arthritis (CIA) rabbit model was made via intraarticular injection with 0.25 ml of collagenase solution. Aralia cordata pharmacopuncture (ACP) was administrated on bilateral Dokbi acupoint (ST35) of rabbits at a dosage of 150 ${\mu}g/kg$ once a day for 28 days after the initiation of the CIA induction. In the study by using CIA rabbit model in vivo, ACP showed the inhibition of cartilage degradation in histological analysis. Aralia cordata also showed anti-apoptotic effect both in vitro and in vivo study. In chondrocytes treated by IL-1a, Aralia cordata inhibited caspase-3 activity and enhanced the proliferation of IL-1a-induced dedifferentiated chondrocytes. ACP showed the inhibition effect on the caspase-3 expression and activity from CIA rabbit model. This study indicates that ACP inhibits the cartilage destruction and the chondrocyte apotosis through downregulation of caspase-3 activity. These data suggest that ACP has a beneficial effect on preventing articular cartilage destruction in osteoarthrtis.

  • PDF

세포사멸에서 Phospholipase D 동위효소의 기능적 역할 (The Functional Role of Phospholipase D Isozymes in Apoptosis)

  • 민도식
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1378-1382
    • /
    • 2014
  • Phospholipase D (PLD)는 세포막을 구성하는 주요지질인 인지질을 분해하여, 이차신호전달물질인 phosphatidic acid (PA)를 생성함으로써 세포의 성장 및 증식, 생존신호전달등 세포내 다양한 생리현상을 조절하는 중요한 신호전달 핵심단백질로 대두되고 있다. PLD의 비정상적인 발현과 활성은 다양한 암을 비롯한 여러 질환에서 나타난다. PLD에 의해 생성된 PA는 세포사멸 유전자의 발현을 감소시켜서 세포사멸에 대한 내성을 나타내고 있다.최근에, 세포사멸과정에서 PLD 단백질의 turnover dynamics에 관한 분자수준에서의 연구가 규명되었다. PLD는, 세포사멸시 활성화되는 단백질 분해효소인 caspases의 새로운 기질로 작용하여 세포사멸을 차별적으로 조절을 한다. Caspase에 의한 PLD동위효소의 차별적인 분해양상이 PLD의 효소활성과 세포사멸억제 기능을 조절한다. 그래서 PLD는 암치료의 표적분자로서의 가능성이 제시된다. 본 리뷰논문에서, 세포사멸조절 PLD의 기능적 역할에 대해 서술하고자 한다.

Anti-apoptotic Activity of Ginsenoside Rb1 in Hydrogen Peroxide-treated Chondrocytes: Stabilization of Mitochondria and the Inhibition of Caspase-3

  • Na, Ji-Young;Kim, Sok-Ho;Song, Ki-Bbeum;Lim, Kyu-Hee;Shin, Gee-Wook;Kim, Jong-Hoon;Kim, Bum-Seok;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.242-247
    • /
    • 2012
  • Chondrocyte apoptosis has been recognized as an important factor in the pathogenesis of osteoarthritis (OA). Hydrogen peroxide ($H_2O_2$), which produces reactive oxygen species, reportedly induces apoptosis in chondrocytes. The ginsenoside $Rb_1$ (G-$Rb_1$) is the principal component in ginseng and has been shown to have a variety of biological activities, such as anti-arthritis, anti-inflammation, and anti-tumor activities. In this study, we evaluated the effects of G-$Rb_1$ on the mitochondrial permeability transition (MPT) and caspase-3 activity of chondrocyte apoptosis induced by $H_2O_2$. Cultured rat articular chondrocytes were exposed to $H_2O_2$ with or without G-$Rb_1$ and assessed for viability, MPT, Bcl-xL/Bax expression, caspase-3 activity, and apoptosis. The co-treatment with G-$Rb_1$ showed an inhibition of MPT, caspase-3 activity, and cell death. Additionally, the levels of the apoptotic protein Bax were significantly lower and the levels of the anti-apoptotic protein Bcl-xL were higher compared with $H_2O_2$ treatment alone. The results of this study demonstrate that G-$Rb_1$ protects chondrocytes against $H_2O_2$-induced apoptosis, at least in part via the inhibition of MPT and caspase-3 activity. These results demonstrate that G-$Rb_1$ is a potentially useful drug for the treatment of OA patients.

Protective effect of ginsenoside Rb1 against tacrolimus-induced apoptosis in renal proximal tubular LLC-PK1 cells

  • Lee, Dahae;Lee, Dong-Soo;Jung, Kiwon;Hwang, Gwi Seo;Lee, Hye Lim;Yamabe, Noriko;Lee, Hae-Jeong;Eom, Dae-Woon;Kim, Ki Hyun;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.75-80
    • /
    • 2018
  • Background: The aim of the present study was to evaluate the potential protective effects of six ginsenosides (Rb1, Rb2, Rc, Rd, Rg1, and Rg3) isolated from Panax ginseng against tacrolimus (FK506)-induced apoptosis in renal proximal tubular LLC-PK1 cells. Methods: LLC-PK1 cells were treated with FK506 and ginsenosides, and cell viability was measured. Protein expressions of mitogen-activated protein kinases, caspase-3, and kidney injury molecule-1 (KIM-1) were evaluated by Western blotting analyses. The number of apoptotic cells was measured using an image-based cytometric assay. Results: Reduction in cell viability by $60{\mu}M$ FK506 was ameliorated significantly by cotreatment with ginsenosides Rg1 and Rb1. The phosphorylation of p38, extracellular signal-regulated kinases, and KIM-1, and cleavage of caspase-3, increased markedly in LLC-PK1 cells treated with FK506 and significantly decreased after cotreatment with ginsenoside Rb1. The number of apoptotic cells decreased by 6.0% after cotreatment with ginsenoside Rb1 ($10{\mu}M$ and $50{\mu}M$). Conclusion: The antiapoptotic effects of ginsenoside Rb1 on FK506-induced apoptosis were mediated by the inhibition of mitogen-activated protein kinases and caspase activation.