• Title/Summary/Keyword: Caspase-1

Search Result 1,278, Processing Time 0.036 seconds

Effect of Glucose at High Concentrations on the Apoptosis of the Cultured Periodontal Ligament Cells and Osteoblasts (고농도 포도당이 뼈모세포와 치주인대세포의 세포자멸사에 미치는 영향에 관한 연구)

  • Park, Sung-Ho;Jue, Seong-Suk;Hong, Jung-Pyo;Shin, Je-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.4
    • /
    • pp.357-364
    • /
    • 2007
  • This experiment was designed to clarify the effect of extracellular glucose on the osteoblasts and periodontal ligament cells. The cells were incubated for 24 and 48 hours with ${\alpha}$-MEM including 1,000 mg/L (control group) and 4,500 mg/L (experimental group) of glucose. Then, the expressions of caspase-3, p38 MAPK, JNK-1, and ERK-1 were examined using Elisa assay and Western blot. The results were as follows: 1. The expression of caspase-3 and p38 MAPK was increased by the high extracellular glucose in both cells. 2. The expression of caspase-3 and p38 MAPK was increased greatly in the periodontal ligament cells than the E1 cells by the high extracellular glucose. 3. The expression of JNK-1 was increased by the high extracellular glucose in both cells. 4. The expression of ERK-1 was not changed by the high extracellular glucose in both cells. These results suggest that extracellular glucose at high concentrations may inhibit the periodontal regeneration process increasing cellular apoptosis. And p38 MAPK and JNK-1 pathway may be the most responsible intracellular pathway rather than ERK-1.

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

Effects of Triterpenoids from Luvunga scandens on Cytotoxic, Cell Cycle Arrest and Gene Expressions in MCF-7 Cells

  • Taher, Muhammad;Al-Zikri, Putri Nur Hidayah;Susanti, Deny;Arief Ichwan, Solachuddin Jauhari;Rezali, Mohamad Fazlin
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Plant-derived triterpenoids commonly possesses biological properties such as anti-inflammatory, antimicrobial, anti-viral and anti-cancer. Luvunga scandens is one of the plant that produced triterpenoids. The aims of the study was to analyze cell cycle profile and to determine the expression of p53 unregulated modulator of apoptosis (PUMA), caspase-8 and caspase-9 genes at mRNA level in MCF-7 cell line treated with two triterpenoids, flindissol (1) and 3-oxotirucalla-7,24-dien-21-oic-acid (2) isolated from L. scandens. The compounds were tested for cell cycle analysis using flow cytometer and mRNA expression level using quantitative RT-PCR. The number of MCF-7 cells population which distributed in Sub G1 phase after treated with compound 1 and 2 were 7.7 and 9.3% respectively. The evaluation of the expression of genes showed that both compounds exhibited high level of expression of PUMA, caspase-8 and caspase-9 as normalized to ${\beta}-actin$ via activation of those genes. In summary, the isolated compounds of L. scandens plant showed promising anticancer properties in MCF-7 cell lines.

Function of Nitric Oxide in Activation-Induced Cell Death of T Lymphocytes

  • Park, Yuk-Pheel;Paik, Sang-Gi;Kim, Young-Sang
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.381-388
    • /
    • 2000
  • Using a murine T cell hybridoma, activation-induced cell death (AICD) was studied. As an in vitro model system for the AICD, 1 cell hybridoma expressing TCR/CD3 complex was incubated onto the immobilized purified anti-CD3 antibody. The immobilized anti-CD3 antibody induced AICD effectively up to 40%. At 1-100 $\mu$M range of SNP, an exogenous source of nitric oxide (NO), the cell proliferation was not affected, but at 1 mM SNP, cell proliferation was significantly reduced. The AICD of T cell hybridoma was inhibited by exogenous NO at non-cytotoxic concentration, In the cells undergoing AICD, the expressions of caspase-3 and FasL were detected, but not iNOS. Similar result was recognized in the apoptosis induced by dexamethasone, an apoptosis-inducing agent. However, the conversion from the inactive form of caspase-3 (32 kDa) to the active form (17 kDa) was significantly reduced in the cells in AICD induced by anti-CD3 antibody, With the result of increased PARP cleavage in the cells, we propose that another PARP cleavage pathway not involving caspase-3 may function in the anti-CD3 antibody induced AICD in the T cell hybridoma.

  • PDF

Effect of Fructus ligustri Lucidi Extract on Cell Viability in Human Glioma Cells

  • Kim, Jin-Won;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.199-205
    • /
    • 2009
  • It is unclear whether Fructus ligustri Lucidi (FLL) extract anti-proliferative effect in human glioma cells. The present study was therefore undertaken to examine the effect of FLL on cell viability and to determine the underlying mechanism in A172 human glioma cells. Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Apoptosis was measured by Annexin-V binding assay and cell cycle analysis. Activation of kinases and caspase-3 was estimated by Western blot analysis. FLL resulted in apoptotic cell death in a dose- and time-dependent manner. FLL-induced cell death was not associated with reactive oxygen species generation. Western blot analysis showed that FLL treatment caused down-regulation of PI3K/Akt pathway, but not ERK. The PI3K/Akt inhibitor LY984002 sensitized the FLL-induced cell death and overexpression of Akt prevented the cell death. FLL induced caspase-3 activation and the FLL-induced cell death was prevented by caspase inhibitors. These findings indicate that FLL results in a caspase-dependent cell death through a P13K/Akt pathway in human glioma cells. These data suggest that FLL may serve as a potential therapeutic agent for malignant human gliomas.

Synchronized Expression of Two Bombyx mori Caspase Family Genes, ice-2 and ice-5 in Cells Induced by Ultraviolet Irradiation

  • Wang, Wenbing;Sun, Ying;Song, Lina;Wu, Yan;Wu, Huiling
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.121-124
    • /
    • 2008
  • The caspase family proteins play an important role in programmed cell death (apoptosis). To date, the expression profiles of the caspase family genes in Bombyx mori (Bm) are poorly known. In this study, we examined the expression profiles of two novel Bm caspase family genes (ice-2 and ice-5), the potential change of the mitochondrial membrane and the morphology in Bm cells after stimulation of ultraviolet (UV) irradiation. The results showed the potential change of the mitochondrial membrane occurred at 5 hours after UV irradiation treatment. Analysis of fluorescent quantitative RT-PCR demonstrated that both the ice-2 and ice-5 might be involved in UV induced apoptosis in Bm cells. Notably, after UV irradiating, expression pattern of ice-2 and ice-5 were remarkably different. The ice-2 gene was highly expressed at two time points, 0.5 and 5 hours after UV stimulating, while the expression level of ice-5 only peaked at 5 hours after UV stimulating. It indicated that apoptosis induced by UV irradiation was involved in the mitochondrial pathway and the two isoforms of Bm ice may act but play different role during the apoptosis of Bm cells.

Induction of Apoptosis Signaling by a Glycoprotein of Capsosiphon fulvescens in AGS Cell (매생이 (Capsosiphon fulvescens) 당단백질에 의한 인간 위암세포 사멸기전)

  • Kim, Young-Min;Kim, In-Hye;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • Capsosiphon fulvescens is well-known green sea algae that, in recent years, has been proposed as a potential anticancer drug. In this study, we found that C. fulvescens glycoprotein (Cf-GP) had pro-apoptotic effects on human gastric carcinoma cells. By SDS-PAGE, we confirmed that C. fulvescens extract contained a glycoprotein. Using H33342 staining, we found that the Cf-GP caused cell death in a does-dependent manner, while an MTS assay showed decreased cellular viability due to induction of apoptosis. To determine the effect of Cf-GP on apoptosis-related cellular events, cells were treated with Cf-GP and the expression of several apoptosis-related protein was determined by Western blotting. Our results indicate that Cf-GP activated both a caspase cascade and PARP, which is a substrate of caspase-3, caspase-8 and the Bcl-2 family proteins. In addition, we assessed caspase-3, and -8 activation and annexin V staining. Our results revealed a cell cycle arrest, itself leading to an increased percentage of sub-G1 cells. Our findings indicate that Cf-GP may be a source of bio-functional material with therapeutic effects on human gastrointestinal cancer.

Effect of Gojineumja(Guzhenyinzi) on Neural Tissue Degeneration In Mouse Model of Alzheimer Disease (고진음자(固眞飮子)가 Alzheimer Disease 병태모델의 신경세포 손상에 미치는 영향)

  • Kim, Hyun-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.31-46
    • /
    • 2009
  • Objectives : This experiment was designed to investigate the effect of Gojineumja(Guzhenyinzi, GJEJ) on damaged neural tissue in cultured glial cells and in the mouse brain tissue. Methods : The effects of the GJEJ on activation of astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide were investigated. The effects of the GJEJ on levels of glial fibrillary acidic protein(GFAP)-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine were investigated. Results : 1. GJEJ reduced levels of activated astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide. 2. GJEJ reduced levels of GFAP-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine. Conclusions : The present data. suggest that GJEJ may have a protective function of neuronal and non-neuronal cells in damaged neural tissue caused by AD-like stimulations. Further studies on identification of effective molecular components of GJEJ and their interactions with damaged neural cells would be important for understanding molecular mechanism and may be further applicable for the development of therapeutic strategies.

  • PDF

Cytotoxicity and Apoptosis of Various Concentrations of Doxorubicin in Methylcholanthrene- induced Rat Fibrosarcoma(MCA) Cells (Methylcholanthrene 유도 섬유육종세포주에서 Doxorubicin 농도에 따른 세포독성과 자멸사의 변화)

  • 정진용;왕영필;나석주
    • Journal of Chest Surgery
    • /
    • v.34 no.6
    • /
    • pp.447-453
    • /
    • 2001
  • Background: Although pulmonary resection is the standard approach for the management of pulmonary metastases from soft tissue sarcoma, most of them are unresectable and chemotherapy remains the only option. The effectiveness of the cytotoxic drugs may be limited by the toxicities that occur before the therapeutic dose is reached. The regional administration of doxorubicin using pulmonary arterial perfusion in a rodent model can produce 10 to 25 times higher concentrations in the lung than systemic administration with minimal systemic toxicities. However, it is unclear whether a high concentration of doxorubicin has beneficial effects for killing cancer cells. Material and Method: We studied this to evaluate the dose-dependent cytotoxic and apoptotic effects of doxorubicin on methylcholanthrene-induced rat fibrosarcoma(MCA) cells. This study examined the cytotoxicity and apoptosis-related gene expressions(Fas, FasL, Bax, caspase 1, caspase 2, caspase 8, Bcl-2, Bcl-xL, Bcl-xS) in MCA cells after 24 hours exposure to various concentrations of doxorubicin such as 1, 5, 10, 50, and 100 $\mu$M. Result: Dose-dependent cytotoxicity was observed after 24 hours exposure to doxorubicin. However, peak apoptosis after 24 hours exposure was observed at 5 $\mu$M of doxorubicin. Above 5 $\mu$M, apoptotic activity was decreased with dose-increment. All mRNA levels of apoptosis-related genes after 24 hours exposure were up-regulated above the control level at 1 $\mu$M of doxorubicin and then decreased by doxorubicin dose-increment except caspase 8, which showed higher levels than the control level at 5 $\mu$M. Apoptosis-related protein levels were highest at 1 $\mu$M of doxorubicin and then decreased by doxorubicin dose-increment. However, Bax and Bcl-xL proteins steadily showed higher levels than the control throughout the different concentrations of doxorubicin. Conclusion: These results suggest that apoptosis is the main cytotoxic mechanism in low concentrations of doxorubicin in MCA cells and apoptosis-related genes, such as Bax, caspase 8, and Bcl-xL, are involved. At high concentrations, doxorubicin still can kill MCA cells, even when apoptosis is inhibited, and have its propriety for achieving much cytotoxicity against MCA cells.

  • PDF

The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.