• Title/Summary/Keyword: Cask

Search Result 206, Processing Time 0.018 seconds

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds (STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구)

  • Kwang Yong Park;Deog Nam Shim;Jong Moon Ha;Sang Dong Lee;Sung Woo Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

A Study on the Prolonged Time Heat Resistance of Shielding Materials Based on Modified and Novolac Type Epoxy Resin (개질 및 노블락형 에폭시수지 차폐재의 장기내열성에 관한 연구)

  • Cho, Soo-Haeng;Oh, Seung-Chul;Do, Jae-Bum;Ro, Seung-Gy;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.884-888
    • /
    • 1998
  • Effects of heating time under high temperature on the thermal and mechanical properties of neutron shielding materials based on modified (KNS-102), hydrogenated(KNS-106) bisphenol-A type epoxy resin and phenol-novolac(KNS-611) type epoxy resin for radioactive material shipping casks have been investigated. At early stages, the initial decomposition temperatures of the shielding materials of KNS-102, KNS-106 and KNS-611 increased with the heating time under high temperature, but it was rarely affected by the heating time in the later stages. In addition, the thermal conductivities of KNS-102 and KNS-106 decreased with heating time, but that of KNS-611 increased with the heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with increase of heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials of KNS-102 and KNS-611 increased with heating time, but those of KNS-106 decreased with increase of heating time. And the heating time under high temperature on the neutron shielding materials did not show measurable loss of weight and hydrogen content.

  • PDF

Review of Spent Nuclear Fuel Dry Storage Demonstration Programs in US (미국의 사용후핵연료 건식저장 실증연구의 과거와 현재)

  • Lee, Sanghoon;Yook, Daesik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.135-149
    • /
    • 2017
  • Demonstration programs for spent nuclear fuel dry storage have been carried out to produce important and confirmatory data to support safety of dry storage systems and integrity of spent nuclear fuel stored in dry condition. The US initiated the dry storage of spent nuclear fuel and has strict and explicit regulatory stipulations on the integrity of spent nuclear fuel in dry storage. The US has carried out several notable demonstration programs for the initiation and license extension of dry storage. At the very early stage of dry storage, the demonstration programs were focused on proof of the safety of dry storage systems and a demonstration project called the dry cask storage characterization project was performed for the license extension of low burn-up fuel dry storage. Currently, a demonstration program for the license extension of high burn-up fuel dry storage is under way and is expected to continue for at least 10 years. Korea has not yet begun the dry storage of PWR fuel and the US programs can be a good reference and can provide lessons to safely begin and operate dry storage in Korea. In this paper, past and current demonstration programs of the US are analyzed and several recommendations are provided for demonstration programs for the dry storage of spent nuclear fuel in Korea.

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.