• Title/Summary/Keyword: Case Drop

Search Result 680, Processing Time 0.026 seconds

Exergy analysis of R717 high-efficiency OTEC power cycle for the efficiency and pressure drop in main components

  • Yoon, Jung-In;Son, Chang-Hyo;Yang, Dong-Il;Kim, Hyeon-Uk;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2013
  • In this paper, an analysis on exergy efficiency of high-efficiency R717 OTEC power system for the efficiency and pressure drop in main components were investigated theoretically in order to optimize the design for the operating parameters of this system. The operating parameters considered in this study include turbine and pump efficiency, and pressure drop in a condenser and evaporator, respectively. As the turbine efficiency of R717 OTEC power system increases, the exergy efficiency of this system increases. But pressure drop in the evaporator of R717 OTEC power system increases, the exergy efficiency of this system decreases, respectively. And, in case of exergy efficiency of this OTEC system, the turbine efficiency and pressure drop in a condenser on R717 OTEC power system is the largest and the lowest among operation parameters, respectively.

The Condensation Pressure Drop of R-22 and R-410A in Small Diameter Tube (세관내 R-22와 R-410A의 응축 압력강하)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The condensation pressure drop for R-22 and R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 mm length with horizontal copper tube of 3.38 mm outer diameter and 1.77 mm inner diameter. The refrigerant mass fluxes ranged from 450 to $1050\;kg/m^2{\cdot}s$ and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-22 is slightly higher than that of R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data.

Smart Phone Display Drop Simulation and Design (Smart Phone Display 낙하 Simulation과 설계)

  • Kim, Won-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.381-385
    • /
    • 2019
  • In this Study, as the structure of smart phone display becomes thin to catch up with slim product trend, the reliability of display module is on the rise as a issue for product design. Especially, almost part of cellular phone should undergo drop test when they fall 1.5m above ground. Thus many manufacturers have considered design guide line using CAE and simulation for more efficive usage of limited resources om the martket. This test simulates the case when cellular phone slips through user's flingers while he is talking on the phone. This paper studies a drop simulation of glass for display in smart phone. This design for reliability improvements are suggested on the basis of the results of FE Analysis and display of smart phone design.

Unilateral Foot Drop During Weight Reduction:A Case Report (체중 감량 중에 발생한 편측 족하수: 증례보고)

  • Hwang, Sung Il
    • Journal of Electrodiagnosis and Neuromuscular Diseases
    • /
    • v.20 no.2
    • /
    • pp.135-138
    • /
    • 2018
  • Peroneal neuropathy scarcely can develop after massive weight reduction. A 21-year-old man complained left foot drop after 28% weight reduction (from 94 kgs to 67.5 kgs). During previous seven months, he played PC games with sitting cross-legged more than seven hours a day. In addition, he started a heavily restricted diet three months ago. Except for those, he had neither any medical history nor trauma to his knee. Electrophysiologic study showed the partial conduction block of left peroneal neuropathy at the fibular head. Four-week well balanced diet and physical therapy improved his foot drop. For the prevention of peroneal neuropathy related to weight reduction, well balanced diet and lifestyle modification are needed.

The Effects of Korean medicine treatment on Foot drop with common peroneal neuropathy patient: A Case Report (족관절 염좌에 따른 비골신경 신전 손상 환자에 대한 근에너지기법과 한의종합치료 병행 증례보고)

  • Ryu, Won-Hyung;Kim, Doo-Ri;Lee, Jiyun;Lee, Yunha;Chai, Jiwon;Chung, Jai-Hyeon;Moon, Hee-Young;Park, Ji-Won
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.14 no.2
    • /
    • pp.67-76
    • /
    • 2019
  • Objectives : The purpose of this study was to explore the effectiveness of Korean medicine treatment and the Muscle Energy Technique on foot drop through a case study with a patient with common peroneal neuropathy. Methods : A patient with severe foot drop after an ankle sprain was hospitalized and treated with acupuncture and traditional medicine and the Muscle Energy Technique. The effect of the treatment was evaluated with the Numeric Rate Scale(NRS), dorsiflexion angle evaluation, and the Manual Muscle Test (MMT). Results : The results of the NRS, dorsiflexion angle evaluation and MMT showed greatly improvementwith results changing from 8 to 2, 0 to 15, and Grade 2 to Grade 4, respectively. Conclusions : This study suggests that Korean medicine treatment and the Muscle Energy Technique could be effective treatments for foot drop with common peroneal neuropathy. However further clinical studies are needed to establish a definite conclusion.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Analysis of Voltage Drop Characteristics of Transformer-based 3-phase Voltage Disturbance Generator (변압기 기반 3상 전압변동발생기의 전압강하 특성해석)

  • Han, Heung-Soo;Lee, Young-Ho;Song, Woong-Hyub;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.411-416
    • /
    • 2010
  • A voltage drop characteristics of a transformer-based voltage disturbance generator with series transformers is analysed. It is well known that a voltage disturbance generator with series transformer is cost-effective and reliable compared with other types. The voltage drop depends on the %Z of the transformer, power rating, and output power factor. A wrong design of the transformer results in a severe voltage drop, which can not guarantee the proper performance of the generator. The voltage drop is analysed under the condition of 10kVA output power rating and 4% of %Z with the variation of power factor. It is found through simulations and experiments that the drop increases as the power factor decreases in lagging mode, and the drop is 4% of the rated voltage in case of 0.85 lagging power factor.

Effective Way of Measuring $K_I$ by Means of ACPD Technique (교류전위차법을 이용한 효과적인 응력확대계수의 측정 방법)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • In order to develop an effective way of measuring the mode I stress intensity factor, $K_I$, by the technique based on the alternating current potential drop (ACPD), the effect of the magnetic flux in the air on the change in potential drop due to load for both ferromagnetic and paramagnetic materials containing a two-dimensional surface crack was investigated. Additionally the effects of the demagnetization and the crack length on the change in potential drop were examined. In the case that the measuring system was designed to induce a large amount of electromotive force, the amount of the change in potential drop due to load was shown to increase largely Also the relationship between the change in potential drop and that in $K_I$ was indicated to be linear without any treatment and it was shown that the demagnetization had almost no effect on the change in potential drop. The change in potential drop did not depend on the crack length but on the measuring system. For the application of the ACPD technique to determine $K_I$.

  • PDF

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation (냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향)

  • Kim, Kyung-Min;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.