• 제목/요약/키워드: Cascades

Search Result 287, Processing Time 0.04 seconds

Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Myocardial infarction (MI) is caused by extensive myocardial damage attributed to the occlusion of coronary arteries. Our previous study in a rat model of ischemia/reperfusion (I/R) demonstrated that administration of arabinoxylan (AX), comprising arabinose and xylose, protects against myocardial injury. In this study, we undertook to investigate whether psyllium seed husk (PSH), a safe dietary fiber containing a high level of AX (> 50%), also imparts protection against myocardial injury in the same rat model. MATERIALS/METHODS: Rats were fed diets supplemented with PSH (1, 10, or 100 mg/kg/d) for 3 d. The rats were then subjected to 30 min ischemia through ligation of the left anterior descending coronary artery, followed by 3 h reperfusion through release of the ligation. The hearts were harvested and cut into four slices. To assess infarct size (IS), an index representing heart damage, the slices were stained with 2,3,5-triphenyltetrazolium chloride (TTC). To elucidate underlying mechanisms, Western blotting was performed for the slices. RESULTS: Supplementation with 10 or 100 mg/kg/d of PSH significantly reduces the IS. PSH supplementation (100 mg/kg/d) tends to reduce caspase-3 generation and increase BCL-2/BAX ratio. PSH supplementation also upregulates the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and its target genes including antioxidant enzymes such as glutathione S-transferase mu 2 (GSTM2) and superoxide dismutase 2 (SOD2). PSH supplementation upregulates some sirtuins ($NAD^+$-dependent deacetylases) including SIRT5 (a mitochondrial sirtuin) and SIRT6 and SIRT7 (nuclear sirtuins). Finally, PSH supplementation upregulates the expression of protein kinase A (PKA), and increases phosphorylated cAMP response element-binding protein (CREB) (pCREB), a target protein of PKA. CONCLUSIONS: The results from this study indicate that PSH consumption reduces myocardial I/R injury in rats by inhibiting the apoptotic cascades through modulation of gene expression of several genes located upstream of apoptosis. Therefore, we believe that PSH can be developed as a functional food that would be beneficial in the prevention of MI.

Immunomodulatory Activities of Body Wall Fatty Acids Extracted from Halocynthia aurantium on RAW264.7 Cells

  • Monmai, Chaiwat;Jang, A-Yeong;Kim, Ji-Eun;Lee, Sang-Min;You, SangGuan;Kang, SeokBeom;Lee, Tae Ho;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1927-1936
    • /
    • 2020
  • Tunicates are known to contain biologically active materials and one species in particular, the sea peach (Halocynthia aurantium), has not been thoroughly studied. In this study we aimed to analyze the fatty acids profile of the H. aurantium body wall and its immunomodulatory effects on RAW264.7 macrophage-like cells. The fatty acids were classified into three categories: saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Omega-3 fatty acid content, including EPA and DHA, was higher than omega-6 fatty acids. H. aurantium body wall fatty acids exhibited enhanced immune response and anti-inflammatory effects on RAW264.7 macrophage-like cells. Under normal conditions, fatty acids significantly increase nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby improving the immune response. On the other hand, in LPS-treated RAW264.7 cells, fatty acids significantly decreased nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby enhancing anti-inflammatory effects. Fatty acids transcriptionally control the expression of the immune-associated genes, iNOS, IL-1β, IL-6, COX-2, and TNF-α, via the MAPK and NF-κB signaling cascades in RAW264.7 cells. However, in LPS-stimulated RAW264.7 cells, H. aurantium body wall fatty acids significantly inhibited expression of inflammatory cytokine; similarly, production of COX-2 and PGE2 was inhibited. The results of our present study provide insight into the immune-improving and anti-inflammatory effects of H. aurantium body wall fatty acids on macrophages. In addition, our study demonstrates that H. aurantium body wall is a potential source of immune regulatory components.

Donggwaja Suppresses Inflammatory Reaction Via Tumor Necrosis Factor α-induced Protein3 and NF-κB (Tumor necrosis factor α - induced protein3의 발현과 NF-κB 활성 억제를 통한 동과자의 염증반응 억제 효과)

  • Kim, Kyun Ha;Choi, Jun-Yong;Joo, Myungsoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • Donggwaja (Benincasae Semen), the seed of Benincasa hispida (Thunb.) Cogn., has been used in Korean traditional medicine to control the body heat and water retention caused by various diseases. Both the symptoms targeted by the herbal medicine in clinic and studies with disease mouse models support the potential anti-inflammatory effect of Donggwaja. However, it is less understood how Donggwaja exerts its possible anti-inflammatory effect. Here, we present evidence that Donggwaja suppresses macrophage inflammatory reactions via expressing tumor necrosis factor a-induced protein 3 (TNFAIP3 or A20) and suppressing NF-kB activity. The ethanol extract of Donggwaja (EED) showed no toxicity when added to RAW 264.7 cells less than 100mg/ml. When treating the cells for 16 h, EED significantly suppressed the nuclear localization of NF-kB, suggesting that EED suppresses NF-kB activity. Concordantly, a semi-quantitative RT-PCR analysis showed that EED decreased the expression of prototypic pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-a, IL(interleukin)-6, and IL-1b. EED induced in RAW 264.7 cells the expression of A20, a ubiquitin modulator that suppresses inflammatory signaling cascades initiated from TLR4 and TNF and IL-1 receptors, while not affecting the induction of Nrf2, an anti-inflammatory factor that could suppress the effect of NF-kB. These results suggest that EED exerts its suppressive effect on inflammation, at least in part, by expressing anti-inflammatory factor A20 and suppressing pro-inflammatory factor NF-kB activity.

1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis

  • Lee, Phil Jun;Pham, Chau Ha;Thuy, Nguyen Thi Thanh;Park, Hye-Jin;Lee, Sung Hoon;Yoo, Hee Min;Cho, Namki
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.217-225
    • /
    • 2021
  • This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.

Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity

  • Kang, Sang-Min;Park, Ji-Young;Han, Hee-Jeong;Song, Byeong-Min;Tark, Dongseob;Choi, Byeong-Sun;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.702-717
    • /
    • 2022
  • Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulates beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediates protein interplay between NS5A and IKKε, thereby contributing to NS5A mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.

Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells

  • Chang, Jai Won;Kim, Soohyun;Lee, Eun Young;Leem, Chae Hun;Kim, Suhn Hee;Park, Chun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.479-499
    • /
    • 2022
  • The lack of a clonal renin-secreting cell line has greatly hindered the investigation of the regulatory mechanisms of renin secretion at the cellular, biochemical, and molecular levels. In the present study, we investigated whether it was possible to induce phenotypic switching of the renin-expressing clonal cell line As4.1 from constitutive inactive renin secretion to regulated active renin secretion. When grown to postconfluence for at least two days in media containing fetal bovine serum or insulin-like growth factor-1, the formation of cell-cell contacts via N-cadherin triggered downstream cellular signaling cascades and activated smooth muscle-specific genes, culminating in phenotypic switching to a regulated active renin secretion phenotype, including responding to the key stimuli of active renin secretion. With the use of phenotype-switched As4.1 cells, we provide the first evidence that active renin secretion via exocytosis is regulated by phosphorylation/dephosphorylation of the 20 kDa myosin light chain. The molecular mechanism of phenotypic switching in As4.1 cells described here could serve as a working model for full phenotypic modulation of other secretory cell lines with incomplete phenotypes.

Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation

  • Wang, Jiena;Zhu, Weiwei;Tu, Junxue;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1262-1274
    • /
    • 2022
  • Cholangiocarcinoma (CCA) is a complex and refractor type of cancer with global prevalence. Several barriers remain in CCA diagnosis, treatment, and prognosis. Therefore, exploring more biomarkers and therapeutic drugs for CCA management is necessary. CCA gene expression data was downloaded from the TCGA and GEO databases. KEGG enrichment, GO analysis, and protein-protein interaction network were used for hub gene identification. miRNA were predicted using Targetscan and validated according to several GEO databases. The relative RNA and miRNA expression levels and prognostic information were obtained from the GEPIA. The candidate drug was screened using pharmacophore-based virtual screening and validated by molecular modeling and through several in vitro studies. 301 differentially expressed genes (DEGs) were screened out. Complement and coagulation cascades-related genes (including AHSG, F2, TTR, and KNG1), and cell cycle-related genes (including CDK1, CCNB1, and KIAA0101) were considered as the hub genes in CCA progression. AHSG, F2, TTR, and KNG1 were found to be significantly decreased and the eight predicted miRNA targeting AHSG, F2, and TTR were increased in CCA patients. CDK1, CCNB1, and KIAA0101 were found to be significantly abundant in CCA patients. In addition, Molport-003-703-800, which is a compound that is derived from pharmacophores-based virtual screening, could directly bind to CDK1 and exhibited anti-tumor activity in cholangiocarcinoma cells. AHSG, F2, TTR, and KNG1 could be novel biomarkers for CCA. Molport-003-703-800 targets CDK1 and work as potential cell cycle inhibitors, thereby having potential for consideration for new chemotherapeutics for CCA.

Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice

  • Kyung-Jun, Boo;Edson Luck, Gonzales;Chilly Gay, Remonde;Jae Young, Seong;Se Jin, Jeon;Yeong-Min, Park;Byung-Joo, Ham;Chan Young, Shin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.161-167
    • /
    • 2023
  • Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants

  • Jinsu Lee;Minsoo Han;Yesol Shin;Jung-Min Lee;Geon Heo;Yuree Lee
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.329-336
    • /
    • 2023
  • Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.